OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4732–4739

Physical limits to broadening compensation in a linear slow light system

Miguel Gonzalez-Herraez and Luc Thévenaz  »View Author Affiliations


Optics Express, Vol. 17, Issue 6, pp. 4732-4739 (2009)
http://dx.doi.org/10.1364/OE.17.004732


View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dispersion experienced by a signal in a slow light system leads to a significant pulse broadening and sets a limit to the maximum delay actually achievable by the system. To overcome this limitation, a substantial research effort is currently being carried out, and successful strategies to reduce distortion in linear slow light systems have already been demonstrated. Recent theoretical and experimental works have even claimed the achievement of zero-broadening of pulses in these systems. In this work we obtain some physical limits to broadening compensation in linear slow light systems based on simple Fourier analysis. We show that gain and dispersion broadening can never compensate in such a system. Additionally, it is simply proven that all the linear slow light systems that introduce a low-pass filtering of the signal (a reduction in the signal root-mean-square spectral width), will always cause pulse broadening. These demonstrations are done using a rigorous shape-independent definition of pulse width (the root-mean-square temporal width) and arguments borrowed from time-frequency analysis.

© 2009 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin
(350.5500) Other areas of optics : Propagation

ToC Category:
Slow and Fast Light

History
Original Manuscript: December 19, 2008
Revised Manuscript: February 16, 2009
Manuscript Accepted: March 6, 2009
Published: March 10, 2009

Citation
Miguel Gonzalez Herraez and Luc Thévenaz, "Physical limits to broadening compensation in a linear slow light system," Opt. Express 17, 4732-4739 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4732


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Gonzalez Herráez, K. Y. Song, and L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett. 87, 081113 (2005). [CrossRef]
  2. M. González Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1395 [CrossRef]
  3. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-9995 [CrossRef] [PubMed]
  4. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Express 16, 2764-2777 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2764 [CrossRef] [PubMed]
  5. J. B. Khurgin, "Performance limits of delay lines based on optical amplifiers," Opt. Lett. 31, 948-950 (2006). [CrossRef] [PubMed]
  6. A. Zadok, A. Eyal, and M. Tur, "Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp," Opt. Express 14, 8498-8505 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-19-8498 [CrossRef] [PubMed]
  7. S. Wang, L. Ren, Y. Liu, and Y. Tomita, "Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams," Opt. Express 16, 8067-8076 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8067 [CrossRef] [PubMed]
  8. T. Schneider, A. Wiatrek, and R. Henker, "Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays," Opt. Express 16, 15617-15622 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15617 [CrossRef] [PubMed]
  9. R. Trebino "Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses" Springer, (2002).
  10. R. W. Boyd and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007). [CrossRef]
  11. R. M. Camacho, M. V. Pack, and J. C. Howell, "Low-distortion slow light using two absorption resonances", Phys. Rev. A,  73, 063812 (2006). [CrossRef]
  12. L. Cohen, "Time-Frequency Analysis" Prentice-Hall (1995).
  13. J. B. Khurgin, "Dispersion and loss limitations on the performance of optical delay lines based on coupled resonator structures," Opt. Lett. 32, 133-135 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-2-133 [CrossRef]
  14. G. Folland and A. Sitaram, "The Uncertainty Principle: A Mathematical Survey," J. Fourier Anal. Appl. 3, 207-238 (1997). [CrossRef]
  15. L. Ren and Y. Tomita, "Reducing group-velocity-dispersion-dependent broadening of stimulated Brillouin scattering slow light in an optical fiber by use of a single pump laser," J. Opt. Soc. Am. B 25, 741-746 (2008), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-5-741 [CrossRef]
  16. A. Wiatrek, R. Henker, S. Preußler, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, "Zero-broadening measurement in Brillouin based slow-light delays," Opt. Express 17, 797-802 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-2-797 [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited