OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4782–4790

A liquid-filled tunable double-focus microlens

H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung  »View Author Affiliations

Optics Express, Vol. 17, Issue 6, pp. 4782-4790 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (800 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel microlens design with tunable double-focus is presented. It is fabricated by adding only one SU-8 photolithography step to the well-developed liquid-filled microlens fabrication process. The thickness of this layer determines the thickness difference between the central and peripheral region of the membrane, the deformation of which is used to define the surface profile of the microlens. The stepped thickness variation is finally manifested as the difference in deformation contour at two different regions of the membrane when subjected to uniform applied pressure, thereby causing two focal lengths to appear. Experimental and simulation results are presented, from which the tunability of the focal lengths of the double-focus microlens is demonstrated to be effective over a wide range through combining the structural design with pressure control. The successful demonstration of this unconventional microlens design concept will potentially extend the application of liquid-filled microlens technology.

© 2009 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.4685) Optical devices : Optical microelectromechanical devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: November 11, 2008
Revised Manuscript: December 20, 2008
Manuscript Accepted: January 9, 2009
Published: March 11, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, "A liquid-filled tunable double-focus microlens," Opt. Express 17, 4782-4790 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. F. Borrelli, Microoptics Technology (2nd Edition, Marcel Dekker, 2005), Chap. 1.
  2. S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004). [CrossRef]
  3. A. Jain and H. Xie, "Endoscopic microprobe with a LVD microlens scanner for confocal imaging," Optical MEMS and Their Applications Conference, 2006. IEEE/LEOS International Conference on. 168-169, 2006.
  4. Y. Li, X. J. Yi, and J. H. Hao, " Design and fabrication of 128×128 diffractive microlens arrays on Si for PtSi FPA," Proc. SPIE 3553, 132-137 (1998). [CrossRef]
  5. G. Yoon, S. Pantanelli, and L. J. Nagy, "Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes," J. Biomed. Opt. 11, 0305021-0305023 (2006). [CrossRef]
  6. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array," J. Micromech. Microeng. 18, 105017 (2008). [CrossRef]
  7. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, "Simple reflow technique for fabrication of a microlens array in solgel glass," Opt. Lett. 28, 731-733 (2003). [CrossRef] [PubMed]
  8. W. L. Chang and P. K. Wei, "Fabrication of a close-packed hemispherical submicron lens array and its application in photolithography," Opt. Express. 15, 6774-6783 (2007). [CrossRef] [PubMed]
  9. H. Choo and R. S. Muller, "Addressable microlens array to improve dynamic range of Shack-Hartmann sensors," J. Microelectromech. Syst. 15, 1555-1567 (2006). [CrossRef]
  10. C. P. Lin, H. Yang, and C. K. Chao, "A new microlens array fabrication method using UV proximity printing," J. Micromech. Microeng. 13, 748-757 (2003). [CrossRef]
  11. N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron. Eng. 60, 365-379 (2002). [CrossRef]
  12. G. Beadie and N. M. Lawandy, "Single-step laser fabrication of refractive microlenses in semiconductor-doped glasses," Opt. Lett. 20, 2153-2155 (1995). [CrossRef] [PubMed]
  13. H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tenability," Opt Express. 14, 11292-11298 (2006). [CrossRef] [PubMed]
  14. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "Optofluidic variable aperture," Opt. Lett. 33, 548-550 (2008). [CrossRef]
  15. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A variable optical attenuator based on optofluidic technology," J. Micromech. Microeng. 18, 115016 (2008). [CrossRef]
  16. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express. 11, 2370-2378 (2003). [CrossRef] [PubMed]
  17. D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84 4194-4196 (2004). [CrossRef]
  18. M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004). [CrossRef]
  19. J. Chen, W. Wang, J. Fang, and K. Varahramyan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004). [CrossRef]
  20. H. Yang, C. Y. Yang, and M. S. Yeh, "Miniaturized variable-focus lens fabrication using liquid filling technique," Microsyst. Technol. 14, 1067-1072 (2007). [CrossRef]
  21. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, "High-performance fluidic adaptive lenses," Appl. Opt. 43, 783-787 (2004). [CrossRef] [PubMed]
  22. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tenability," Appl. Phys. Lett. 82, 3171-3173 (2003). [CrossRef]
  23. H. W. Ren and S. T. Wu, "Variable-focus liquid lens," Opt. Express. 15, 5931-5936 (2007). [CrossRef] [PubMed]
  24. D. Y. Zhang, N. Justis, and Y. H. Lo, "Integrated fluidic adaptive zoom lens," Opt. Lett. 15, 2855-2857 (2004). [CrossRef]
  25. X. F. Zeng and H. R. Jiang, "Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding," J. Microelectromech Syst. 17, 1210-1217 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited