OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4798–4805

Collective coupling of atoms with cavity mode and free-space field

Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu  »View Author Affiliations

Optics Express, Vol. 17, Issue 6, pp. 4798-4805 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an experimental study of the collective coupling of three-level atoms with a cavity mode and a free-space laser field. The measurement of the cavity transmission with a weak probe field coupled into the cavity mode reveals three spectral peaks: two sidebands and a central peak, which is produced by the coherent interaction of the free-space field with individual atoms and the collective interaction of the multiple atoms with the cavity mode. The experimental results agree with a simple calculation based on the classical light transmission through a cavity containing multiple atoms coherently driven by a free-space laser.

© 2009 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.3690) Atomic and molecular physics : Line shapes and shifts
(270.1670) Quantum optics : Coherent optical effects
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Quantum Optics

Original Manuscript: December 4, 2008
Revised Manuscript: January 19, 2009
Manuscript Accepted: January 20, 2009
Published: March 11, 2009

Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu, "Collective coupling of atoms with cavity mode and free-space field," Opt. Express 17, 4798-4805 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. R. Berman, Ed, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).
  2. E. T. Jaynes and F. W. Cummings, "Comparison of quantum and semiclassical radiation theories with application to the beam maser," Proc. IEEE 51, 89-109(1963). [CrossRef]
  3. J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, "Theory of Spontaneous-Emission Line Shape in an Ideal Cavity," Phys. Rev. Lett. 51, 550-553(1983). [CrossRef]
  4. A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, "Observation of the Vacuum Rabi Spectrum for One Trapped Atom," Phys. Rev. Lett. 93, 233603(1-4) (2004). [CrossRef] [PubMed]
  5. G. S. Agarwal, "Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity," Phys. Rev. Lett. 53, 1732-1735(1984). [CrossRef]
  6. M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, "Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity," Phys. Rev. Lett. 63, 240 - 243 (1989). [CrossRef] [PubMed]
  7. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, "Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations," Phys. Rev. Lett. 64, 2499-2502 (1990). [CrossRef] [PubMed]
  8. J. Gripp, S. L. Mielke, and L. A. Orozco, "Evolution of the vacuum Rabi peaks in a detuned atom-cavity system," Phys. Rev. A 56, 3262-3273 (1997). [CrossRef]
  9. J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, "Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity," Phys. Rev. Lett. 96, 023002(1-4) (2006). [CrossRef] [PubMed]
  10. G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble,"Optical bistability and photon statistics in cavity quantum electrodynamics," Phys. Rev. Lett. 67, 1727 - 1730 (1991). [CrossRef] [PubMed]
  11. P. Grangier, J. F. Roch, J. Roger. L. A. Lugiato, E. M. Pessina, G. Scandroglio, and P. Galatola, "2-photon double-beam optical bistability in the dispersive regime," Phys. Rev. A 46, 2735-2743 (1992). [CrossRef] [PubMed]
  12. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, "Intracavity electromagnetically induced transparency," Opt. Lett. 23, 295-297 (1998). [CrossRef]
  13. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, "Cavity-linewidth narrowing by means of electromagnetically induced transparency," Opt. Lett. 25, 1732-1735 (2000). [CrossRef]
  14. G. Hernandez, J. Zhang, and Y. Zhu, "Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system," Phys. Rev. A 76, 053814 (1-4) (2007). [CrossRef]
  15. H. Wu, J. Gea-Banacloche, and M. Xiao, "Observation of Intracavity Electromagnetically InducedTransparency and Polariton Resonances in a Doppler-Broadened Medium," Phys. Rev. Lett. 100, 173602(1-4) (2008). [CrossRef] [PubMed]
  16. A. Joshi and M. Xiao, "Optical Multistability in Three-Level Atoms inside an Optical Ring Cavity," Phys. Rev. Lett. 91, 143904-(1-4) (2003). [CrossRef] [PubMed]
  17. J. Simon, H. Tanji, J. K. Thompson, and V. Vuletic, "Interfacing collective atomic excitations and single photons," Phys. Rev. Lett. 98, 183601(1-4) (2007). [CrossRef] [PubMed]
  18. J. Zhang, G. Hernandez, and Y. Zhu, "Slow light with cavity electromagnetically induced transparency," Opt. Lett. 33, 46-48 (2008). [CrossRef]
  19. S. E. Harris, "Electromagnetically Induced Transparency," Phys. Today 50, 36-42 (1997). [CrossRef]
  20. E. Arimondo, "Coherent population trapping in laser spectroscopy," in Progress in Optics, E. Wolf ed., (Elsevier, Amsterdam) 31, 257-354 (1996).
  21. J. Zhang, G. Hernandez, and Y. Zhu, "Suppressing normal mode excitation by quantum interference in a cavity-atom system," Opt. Express 16, 7860-7868 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited