OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4879–4889

Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent

Justin Rajesh Rajian, Paul L Carson, and Xueding Wang  »View Author Affiliations

Optics Express, Vol. 17, Issue 6, pp. 4879-4889 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In photoacoustic imaging, the intensity of photoacoustic signal induced by optical absorption in biological tissue is proportional to light energy deposition, which is the product of the absorption coefficient and the local light fluence. Because tissue optical properties are highly dependent on the wavelength, the spectrum of the local light fluence at a target tissue beneath the sample surface is different than the spectrum of the incident light fluence. Therefore, quantifying the tissue optical absorption spectrum by using a photoacoustic technique is not feasible without the knowledge of the local light fluence. In this work, a highly accurate photoacoustic measurement of the subsurface tissue optical absorption spectrum has been achieved for the first time by introducing an extrinsic optical contrast agent with known optical properties. From the photoacoustic measurements with and without the contrast agent, a quantified measurement of the chromophore absorption spectrum can be realized in a strongly scattering medium. Experiments on micro-flow vessels containing fresh canine blood buried in phantoms and chicken breast tissues were carried out in a wavelength range from 680 nm to 950 nm. Spectroscopic photoacoustic measurements of both oxygenated and deoxygenated blood specimens presented an improved match with the references when employing this technique.

© 2009 Optical Society of America

OCIS Codes
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 18, 2008
Revised Manuscript: February 20, 2009
Manuscript Accepted: March 9, 2009
Published: March 13, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Justin R. Rajian, Paul L. Carson, and Xueding Wang, "Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent," Opt. Express 17, 4879-4889 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Mol. Imaging 2, 113-123 (2003). [CrossRef] [PubMed]
  2. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003). [CrossRef] [PubMed]
  3. S. Yang, Da. Xing, Q. Zhou, L. Xiang, and Y. Lao, "Functional imaging of cerebrovascular in small animals using high resolution photoacoustic tomography," Med. Phys. 34, 3294-3301 (2007). [CrossRef] [PubMed]
  4. C. G. A. Hoelen, F. F. M. de Muil, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998). [CrossRef]
  5. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003). [CrossRef]
  6. X. Wang, X. Xie, G. Ku, and L. V. Wang, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 (2006). [CrossRef] [PubMed]
  7. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006). [CrossRef] [PubMed]
  8. Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, "Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein," Opt. Lett. 31, 1827-1829 (2006). [CrossRef] [PubMed]
  9. G. F. Lungfu, M. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Int. J. Oncology 30, 45-54 (2007).
  10. B. Liu, D. Reinecke, R. A. Kruger, and K. M. Stantz, "Phantom and in vivo measurements of hemoglobin concentration and oxygen saturation using PCT-S small animal scanner," Proc. SPIE 6437, 64371X1- 64371X9 (2007).
  11. K. M. Stantz, B. Liu, M. Cao, D. Reinecke, K. Miller, and R. Kruger, "Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification," Proc. SPIE 6086, 608605 (2006). [CrossRef]
  12. D. Yang, Da. Xing, S. Yang, and L. Xiang, "Fast full view photoacoustic imaging by combined scanning with a linear transducer array," Opt. Express 15, 15566 - 15575 (2007). [CrossRef] [PubMed]
  13. Y. Lao, Da Xing, S. Yang, and L. Xiang, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008). [CrossRef] [PubMed]
  14. L. Xiang, Da. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, "Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor," J. Biomed. Opt. 12, 014001 (2007) [CrossRef] [PubMed]
  15. P-C. Lie, C-R. C. Wang, D-B. Shieh, C-W. Wei, C-K. Liao, C. Poe, S. Jhan, A-A. Ding, and Y-N. Wu, "In vivo photoacoustic molecular imaging with simulataneous multiple selective targeting using antibody-conjugated gold nanorods," Opt. Express 16, 18605- 18615 (2008). [CrossRef]
  16. X. Wang, D. L. Chamberland, and D. A. Jamadar, "Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis," Opt. Lett. 32, 3002-3004 (2007). [CrossRef] [PubMed]
  17. A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Laser based optoacoustic imaging in biological tissues," Proc. SPIE 2134A, 122 - 128 (1994).
  18. R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoacoustic ultrasound (PAUS) - Reconstruction tomography," Med. Phys. 22, 1605-1609 (1995). [CrossRef] [PubMed]
  19. M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006). [CrossRef]
  20. X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, "Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent," Opt. Lett. 29,730-732 (2004). [CrossRef] [PubMed]
  21. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004). [CrossRef]
  22. M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, "Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels," Phys. Med. Biol. 52, 1349-1361 (2007). [CrossRef] [PubMed]
  23. J. Laufer, D. Delpy, C. Elwell, and P. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007). [CrossRef]
  24. K. Maslov, H. F. Zhang, and L. V. Wang, "Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo," Inverse Probl. 23, S113-S122 (2007). [CrossRef]
  25. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 053901 (2007). [CrossRef]
  26. S. A. Prahl, "Optical absorption of hemoglobin," http://omlc.ogi.edu/spectra/hemoglobin/.
  27. S. Marengo, C. Pépin, T. Goulet, and D. Houde, "Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier," IEEE J. Sel. Top. Quantum Electron. 5, 895-901 (1999). [CrossRef]
  28. Z. Zhao and R. Myllylä, "The effects of optical scattering on pulsed photoacoustic measurement in weakly absorbing liquids," Meas. Sci. Technol. 12, 2172-2177 (2001). [CrossRef]
  29. Z. Zhao and R. Myllylä, "Scattering photoacoustic study of weakly-absorbing substances in aqueous suspensions," J. Phys. IV France 137, 385-390 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited