OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4913–4919

Design of all-solid leakage channel fibers with large mode area and low bending loss

Kunimasa Saitoh, Yukihiro Tsuchida, Lorenzo Rosa, Masanori Koshiba, Federica Poli, Annamaria Cucinotta, Stefano Selleri, Mrinmay Pal, Mukul Paul, Debashri Ghosh, and Shyamal Bhadra  »View Author Affiliations

Optics Express, Vol. 17, Issue 6, pp. 4913-4919 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (600 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate a novel design for all-solid large mode area (LMA) leakage channel fibers (LCFs) for high-power Yb-doped fiber lasers and amplifiers, based on a single down-doped-silica rod ring surrounding a seven-cell pure-silica core, aiming for effectively single-mode behavior and low bending loss characteristics. Through detailed numerical simulations based on the finite element method (FEM), we find that the proposed all-solid LMA-LCFs, having a seven-cell core and two different sizes of down-doped rods, can achieve sufficient differential mode loss and much lower bending loss, as compared with a previously-reported LCF with a one-cell core and six large down-doped-silica rods.

© 2009 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 17, 2009
Revised Manuscript: March 9, 2009
Manuscript Accepted: March 10, 2009
Published: March 13, 2009

Kunimasa Saitoh, Yukihiro Tsuchida, Lorenzo Rosa, Masanori Koshiba, Federica Poli, Annamaria Cucinotta, Stefano Selleri, Mrinmay Pal, Mukul Paul, Debasri Ghosh, and Shyamal Bhadra, "Design of all-solid leakage channel fibers with large mode area and low bending loss," Opt. Express 17, 4913-4919 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004). [CrossRef]
  2. P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser," Opt. Lett. 31, 226-228 (2006). [CrossRef] [PubMed]
  3. J. M. Fini, "Design of large-mode-area amplifier fibers resistant to bend-induced distortion," J. Opt. Soc. Am. B 24, 1669-1676 (2007). [CrossRef]
  4. A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001). [CrossRef]
  5. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, "Singlemode photonic crystal fibre with effective area of 600 μm2 and low bending loss," Electron. Lett. 39, 1802-1803 (2003). [CrossRef]
  6. W. S. Wong, X. Peng, J. M. McLanghlin, and L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005). [CrossRef] [PubMed]
  7. L. Dong, J. Li, and X. Peng, "Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 μm2," Opt. Express 14, 11512-11519 (2006). [CrossRef] [PubMed]
  8. X. Peng and L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2," Opt. Lett. 32, 358-360 (2007). [CrossRef] [PubMed]
  9. L. Dong, X. Peng, and J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. Am. B 24, 1689-1697 (2007). [CrossRef]
  10. L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M.E. Fermann, "Robust and practical optical fibers for single mode operation with core diameters up to 170 μm." presented at Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference 2008 (CLEO/QELS 2008), San Jose, Calif., May 2008.
  11. L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, "All-glass large-core leakage channel fibers," IEEE J. Sel. Topics Quantum Electron. 15, 47-53 (2009). [CrossRef]
  12. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  13. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Express 14, 11128-11141 (2006). [CrossRef] [PubMed]
  14. Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design of single-moded holey fibers with large-mode-area and low bending losses: The significance of the ring-core region," Opt. Express 15, 1794-1803 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited