OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5014–5022

Transmission through metallic array slits with perpendicular cuts

Yanhua Wang, Yingqi Wang, Yan Zhang, and Shutian Liu  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5014-5022 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transmission of normally incident plane wave through an array of subwavelength metallic slits modified by perpendicular cuts has been explored. The cuts in middle of slit affect the even and odd modes of slits in different manners. To the best of our knowledge, this is the first work to investigate the influence of cuts on higher modes of slit, which is quite different from that on the fundamental mode studied in previous papers. Shifting the cuts along the vertical slits, we can get two kinds of resonances, which can be excited when the cuts locate at the center of electric or magnetic antinodes. In addition, we propose a new explanation model, in which we ascribe the resonance to three reasons: the F-P cavity theory, the surface current flow, and the surface charges. Irrespective of even and odd modes, the increase in the length of current flow or decrease in ability of accumulating charges dominates when the cut lies at different locations, which corresponds to a red or blue shift of resonant wavelengths. All calculated results are well explained by our proposed model.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance

ToC Category:
Optics at Surfaces

Original Manuscript: January 16, 2009
Revised Manuscript: February 13, 2009
Manuscript Accepted: February 17, 2009
Published: March 16, 2009

Yanhua Wang, Yingqi Wang, Yan Zhang, and Shutian Liu, "Transmission through metallic array slits with perpendicular cuts," Opt. Express 17, 5014-5022 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297,820-822 (2002). [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).
  3. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).
  4. C. Genet and T. W. Ebbesen, " Light in tiny holes," Nature (London) 445,39-46 (2007).
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).
  6. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, "Strong coupling between surface plasmonpolaritons and organic molecules in subwavelength hole arrays," Phys. Rev. B 71,035424 (2005).
  7. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92,107401 (2004). [PubMed]
  8. F. Miyamaru and M. Hangyo,"Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons," Phys. Rev. B 71,165408 (2005).
  9. D. X Qu and D. Grischkowsky, "Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays," Phys. Rev. Lett. 93,196804 (2004). [PubMed]
  10. J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68,201306 (2003).
  11. S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175,165-173 (2000).
  12. Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86,5601-5603 (2001). [PubMed]
  13. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88,057403 (2002). [PubMed]
  14. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures," Phys. Rev. B 68,125404 (2003).
  15. Q1. K. G. Lee and Q-Han Park, "Coupling of surface plasmon polaritons and light in metallic nanoslits," Phys. Rev. Lett. 95,103902 (2005). [PubMed]
  16. M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 88,071114 (2006).
  17. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, and J. R. Sambles, "Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies," Phys. Rev. Lett. 92,147401(2004). [PubMed]
  18. Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express 13,4485-4491 (2005). [PubMed]
  19. C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91,111111 (2007).
  20. P. Ginzburg and M. Orenstein, "Plasmonic transmission lines: from micro to nano scale with λ /4 impedance matching," Opt. Express 15,6762-6767 (2007). [PubMed]
  21. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao,"Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13,6815-6820 (2005). [PubMed]
  22. D. B. Shao and S. C. Chen,"Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86,253107 (2005).
  23. Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85,642-644 (2004).
  24. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles,"Transmission of microwaves through a stepped subwavelength slit," Appl. Phys. Lett. 91,251106 (2007).
  25. D. B. Ge and Y. B. Yan, Electromagnetic Algorithm: The Finite-Difference Time-Domain method, (Electronic Science and Technology University Press, 2003)
  26. A. Taflove snd S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, MA, 2005, third edition).
  27. F. I. Baida and D. V. Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
  28. S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders," Phys. Rev. B 68,045415 (2003).
  29. D. B. Shao and S. C. Chen, "Numerical simulation of surface-plasmon- assisted nanolithography," Opt. Express 13,6964-6973 (2005). [PubMed]
  30. A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, "The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities," J. Appl. Phys. 99,124903 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited