OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5023–5032

Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats

Mario Bolea, José Mora, Beatriz Ortega, and José Capmany  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5023-5032 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose theoretically and experimentally demonstrate an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. The proposed system permits a full reconfigurability of photonic microwave filter and therefore high-order UWB pulses can be generated to successfully satisfy the FCC regulation. Moreover, the photonic UWB pulse generator is adaptable to different pulse modulation formats since the amplitude, polarity and time delay of generated pulses can be controlled with a reconfiguration time up to tens of nanoseconds.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 21, 2009
Revised Manuscript: February 16, 2009
Manuscript Accepted: February 16, 2009
Published: March 16, 2009

Mario Bolea, Jose Mora, Beatriz Ortega, and Jose Capmany, "Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats," Opt. Express 17, 5023-5032 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q1. D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio tecnhonology: Potencitail and challenges ahead," IEEE Commum. Mag. 41, 66-74 (2003). [CrossRef]
  2. G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave Mag. 4, 36-47 (2003). [CrossRef]
  3. J. H. Reed Christopher, An introduction to Ultra Wideband Communication System (Prentice Hall Communications Engineering and Emerging Technologies Series, 2005).
  4. L. Yang and G. B. Giannakis, "Ultra-Wideband Communications: an idea whose time has come," IEEE Signal Process. Mag. 21, pp 26-54 (2004). [CrossRef]
  5. Q2. J. Capmany and D. Novak, "Microwave Photonics combines two worlds," Nature Photon. 1, 319-330 (2007). [CrossRef]
  6. J. Yao, F. Zeng, and Q. Wang, "Photonic Generation of Ultrawideband Signals," J. Lightwave Technol. 25, 3219-3235 (2007). [CrossRef]
  7. M. Jazayerifar, B. Cabon, and J.A. Salehi, "Transmission of Multi-Band OFDM and Impulse Radio Ultra-Wideband Signals Over Single Mode Fiber," J. Lightwave Technol. 26, 2594-2603 (2008). [CrossRef]
  8. S. Pan and J. Yao, "Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer," Opt. Lett. 34, 160-162 (2009). [CrossRef] [PubMed]
  9. J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, "Photonic Polarity-Switchable Ultra-Wideband Pulse Generation Using a Tunable Sagnac Interferometer Comb Filter," IEEE Photon. Technol. Lett. 20, 1320-1322 (2008). [CrossRef]
  10. I. S. Lin and A. M. Weiner, "Selective Correlation Detection of Photonically Generated Ultrawideband RF Signals," J. Lightwave Technol. 26, 2692-2699 (2008) [CrossRef]
  11. J. Li, K. Xu, S. Fu, J. Wu, J. Lin, M. Tang, and P. Shum, "Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator," Opt. Express 15, 18156-18161 (2007). [CrossRef] [PubMed]
  12. Q. Wang and J. Yao, "Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter," Opt. Express 15, 14667-14672 (2007). [CrossRef] [PubMed]
  13. Q3. I. S. Lin, J. D. McKinney, and A.M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005). [CrossRef]
  14. M. Abtahi, M. Mirsshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-Wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008). [CrossRef]
  15. J. D. McKinney, D. Peroulis, and A. M. Weiner, "Dispersion Limitations of Ultra-Wideband Wireless Links and Their Compensation Via Photonically Enabled Arbitrary Waveform Generation," IEEE Trans. Microwave Theory Tech. 56, 710- 719 (2008). [CrossRef]
  16. J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247- 4255 (2006). [CrossRef]
  17. F. Zeng and J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823- 825 (2006). [CrossRef]
  18. F. Zeng and J. Yao, "Ultrawideband Impulse Radio Signal Generation Using a High-Speed Electrooptic Phase Modulator and a Fiber-Bragg-Grating-Based Frequency Discriminator," IEEE Photon. Technol. Lett. 18, 2062- 2064 (2006). [CrossRef]
  19. Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006). [CrossRef] [PubMed]
  20. H. Chen, M. Chen, T. Wang, M. Li, and S. Xie, "Methods for Ultra-Wideband Pulse Generation Based on Optical Cross-Polarization Modulation," J. Lightwave Technol. 26, 2492-2499 (2008) [CrossRef]
  21. J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, "Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator," Opt. Lett. 33, 288-290 (2008). [CrossRef] [PubMed]
  22. J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete time optical processing of microwave signals," J. Lightwave Technol. 22, 702-723 (2005). [CrossRef]
  23. R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832- 846 (2006). [CrossRef]
  24. J. Capmany, B. Ortega, and D. Pastor, "A Tutorial on Microwave Photonic Filters," J. Lightwave Technol. 24, 201- 229 (2006). [CrossRef]
  25. J. Capmany, J. Cascón, J.L. Marín, S. Sales, D. Pastor, and J. Martí, "Synthesis of Fiber-optic delay line filters," J. Lightwave Technol. 12, 2003-2012 (1995). [CrossRef]
  26. J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave Photonic filters with negative coefficients based on phase inversion in an Electro-optic Modulator," Opt. Lett. 28, 1415- 1417 (2003). [CrossRef] [PubMed]
  27. J. Li, K. Xu, H. Huang, J. Wu, J. Lin, S. Fu, M. Tang, and P. Shum, "Photonic Pulse Generation and Modulation for Ultra-Wideband-over-Fiber Applications," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThD3. [PubMed]
  28. D. Marcuse, "Pulse distortion in single-mode fibers," Appl. Opt. 19, 1653-1660 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited