OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5083–5088

All-optical self-switching in optimized phase-shifted fiber Bragg grating

Irina V. Kabakova, Bill Corcoran, Jeremy A. Bolger, C. Martijn de Sterke, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5083-5088 (2009)
http://dx.doi.org/10.1364/OE.17.005083


View Full Text Article

Enhanced HTML    Acrobat PDF (165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate all-optical self-switching based on sub nanosecond pulse propagation through an optimized fiber Bragg grating with a π phase-jump. The jump acts as a cavity leading to an intensity enhancement by factor 19. At pulse peak powers of 1.5 kW we observe 4.2 dB nonlinear change in transmission. Experimental results are consistent with numerical simulations.

© 2009 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 29, 2009
Revised Manuscript: March 3, 2009
Manuscript Accepted: March 3, 2009
Published: March 16, 2009

Citation
Irina V. Kabakova, Bill Corcoran, Jeremy A. Bolger, Martijn de Sterke, and Benjamin J. Eggleton, "All-optical self-switching in optimized phase-shifted fiber Bragg grating," Opt. Express 17, 5083-5088 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5083


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978). [CrossRef]
  2. R. Kashyap, Fiber Bragg Gratings (San Diego, CA: Academic, 1999).
  3. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979). [CrossRef]
  4. B. J. Eggleton and C. M. de Sterke,"Nonlinear pulse propagation in Bragg grating," J. Opt. Soc. Am. B 14, 2980-2993 (1997). [CrossRef]
  5. J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, "Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings," Opt. Lett. 30, 2457-2459 (2005). [CrossRef] [PubMed]
  6. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, "Experimental observation of the nonlinear pulse compression in nonuniform Bragg gratings," Opt. Lett. 22, 1837-1839 (1997). [CrossRef]
  7. N. G. R. Broderick, D. J. Richardson, and M. Ibsen, "Nonlinear switching in 20-cm-long fiber Bragg grating," Opt. Lett. 25, 536-538 (2000). [CrossRef]
  8. S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron. Lett. 26, 1459-1460 (1990). [CrossRef]
  9. H. Lee, and G. P. Agrawal, "Nonlinear switching of optical pulses in fiber Bragg gratings," IEEE J. Quantum Electron. 39, 508-515 (2003). [CrossRef]
  10. A. E. Bieber, T. G. Brown, and R. C. Tiberio, "Optical switching in phase-shifted metal-semiconductor-metal Bragg reflectors," Opt. Lett. 20, 2216-2218(1995). [CrossRef] [PubMed]
  11. A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000). [CrossRef]
  12. D. Marcuse, Theory of dielectric optical waveguides (Academic Press, 1991).
  13. I. C. M. Littler, T. Grujic, B. J. Eggleton, "Photothermal effects in fiber Bragg gratings," Appl. Opt. 45, 4679-4685 (2006). [CrossRef] [PubMed]
  14. C. M. de Sterke, K. R. Jackson, and B. D. Robert, "Nonlinear coupled mode equations on a finite interval: a numerical procedure," J. Opt. Soc. Am. B 8, 403-412 (1991). [CrossRef]
  15. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Laser Technol. 3, 142-148 (1997).
  16. M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Highperformance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am. B 23, 1323-1331 (2006). [CrossRef]
  17. H. C. Hong, D. -I. Yeom, E. C. M¨agi, L. B. Fu, B. T. Kuhlmey, C. Martijn de Sterke, and B. J. Eggleton,"Nonlinear switching using long-period gratings in As2S3 chalcogenide fiber," J. Opt. Soc. Am. B 25, 1393-1401 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited