OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5125–5138

Effects of sampling strategy on image quality in noncontact panoramic fluorescence diffuse optical tomography for small animal imaging

Xiaofeng Zhang and Cristian Badea  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5125-5138 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence diffuse optical tomography is an emerging technology for molecular imaging with recent technological advances in biomarkers and photonics. The introduction of noncontact imaging methods enables very large-scale data acquisition that is orders of magnitude larger than that from earlier systems. In this study, the effects of sampling strategy on image quality were investigated using an imaging phantom mimicking small animals and further analyzed using singular value analysis (SVA). The sampling strategy was represented in terms of a number of key acquisition parameters, namely the numbers of sources, detectors, and imaging angles. A number of metrics were defined to quantitatively evaluate image quality. The effects of acquisition parameters on image quality were subsequently studied by varying each of the parameters within a reasonable range while maintaining the other parameters constant, a method analogue to partial derivative in mathematical analysis. It was found that image quality improves at a much slower rate if the acquisition parameters are above certain critical values (~5 sources, ~15 detectors, and ~20 angles for our system). These critical values remain virtually the same even if other acquisition parameters are doubled. It was also found that increasing different acquisition parameters improves image quality with different efficiencies in terms of the number of measurements: for a system characterized by a smaller threshold in SVA (less than 10-5 in our study), the number of sources is the most efficient, followed by the number of detectors and subsequently the number of imaging angles. However, for systems characterized by a larger threshold, the numbers of sources and angles are equally more efficient than the number of detectors.

© 2009 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(110.6880) Imaging systems : Three-dimensional image acquisition
(110.6960) Imaging systems : Tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 13, 2008
Revised Manuscript: February 13, 2009
Manuscript Accepted: March 9, 2009
Published: March 17, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Xiaofeng Zhang and Cristian Badea, "Effects of sampling strategy on image quality in noncontact panoramic fluorescence diffuse optical tomography for small animal imaging," Opt. Express 17, 5125-5138 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Wessels, A. C. Busse, J. Mahrt, C. Dullin, E. Grabbe, and G. A. Mueller, "In vivo imaging in experimental preclinical tumor research—a review," Cytometry A 71, 542-549 (2007). [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005). [CrossRef]
  3. J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005). [CrossRef] [PubMed]
  4. S. Patwardhan, S. Bloch, S. Achilefu, and J. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2577 (2005). [CrossRef] [PubMed]
  5. S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-R48 (2004). [CrossRef] [PubMed]
  6. L. Herve, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltie, and P. Rizo, "Noncontact fluorescence diffuse optical tomography of heterogeneous media," Appl. Opt. 46, 4896-4906 (2007). [CrossRef] [PubMed]
  7. S. V. Patwardhan, and J. P. Culver, "Quantitative diffuse optical tomography for small animals using an ultrafast gated image intensifier," J. Biomed. Opt. 13, 011009 (2008). [CrossRef] [PubMed]
  8. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, "Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study," Phys. Med. Biol. 52, 5569-5585 (2007). [CrossRef] [PubMed]
  9. H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, "Noncontact optical imaging in mice with full angular coverage and automatic surface extraction," Appl. Opt. 46, 3617-3627 (2007). [CrossRef] [PubMed]
  10. V. Ntziachristos, and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001). [CrossRef]
  11. G. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, "Complete-angle projection diffuse optical tomography by use of early photons," Opt. Lett. 30, 409-411 (2005). [CrossRef] [PubMed]
  12. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," J. Opt. Soc. Am. A 21, 1035-1049 (2004). [CrossRef]
  13. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005). [CrossRef] [PubMed]
  14. R. Jorge, and N. Vasilis, "Imaging scattering media from a distance: theory and applications of noncontact optical tomography," Mod. Phys. Lett. B 18, 1403-1431 (2004). [CrossRef]
  15. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nature Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  16. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003). [CrossRef] [PubMed]
  17. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, "Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth," Appl. Opt. 46, 1669-1678 (2007). [CrossRef] [PubMed]
  18. R. B. Schulz, J. Peter, W. Semmler, C. D'Andrea, G. Valentini, and R. Cubeddu, "Comparison of noncontact and fiber-based fluorescence-mediated tomography," Opt. Lett. 31, 769-771 (2006). [CrossRef] [PubMed]
  19. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections," Opt. Lett. 32, 382-384 (2007). [CrossRef] [PubMed]
  20. S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005). [CrossRef] [PubMed]
  21. B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, "Comparison of imaging geometries for diffuse optical tomography of tissue," Opt. Express 4, 270-286 (1999). [CrossRef] [PubMed]
  22. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, "Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis," Opt. Lett. 26, 701-703 (2001). [CrossRef]
  23. J. Sun, K. Fu, A. Wang, A. W. Lin, U. Utzinger, and R. Drezek, "Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements," Appl. Opt. 45, 8152-8162 (2006). [CrossRef] [PubMed]
  24. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, Suppl 1, S275-S288 (2004). [CrossRef] [PubMed]
  25. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003). [CrossRef] [PubMed]
  26. V. Toronov, E. D'Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, "Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain," Opt. Express 11, 2717-2729 (2003). [CrossRef] [PubMed]
  27. T. Lasser and V. Ntziachristos, "Optimization of 360 projection fluorescence molecular tomography," Med. Image Anal. 11, 389-399 (2007). [CrossRef] [PubMed]
  28. X. Zhang, V. Toronov, and A. G. Webb, "Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain," Opt. Express 13, 5513-5521 (2005). [CrossRef] [PubMed]
  29. R. Schulz, P. Joerg, S. Wolfhard, D. Cosimo, V. Gianluca, and C. Rinaldo, "Quantifiability and image quality in noncontact fluorescence tomography," Proc. SPIE 5859, 141-148 (2005).
  30. R. Fletcher, and C. M. Reeves, "Function minimization by conjugate gradients," Comput. J. 7, 149-154 (1964). [CrossRef]
  31. A. Nakayama, A. C. Bianco, C. Y. Zhang, B. B. Lowell, and J. V. Frangioni, "Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging," Mol. Imaging 2, 37-49 (2003). [CrossRef] [PubMed]
  32. M. Jacob, Y. Bresler, V. Toronov, X. Zhang, and A. Webb, "Level-set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging," J. Biomed. Opt. 11, 064029 (2006). [CrossRef]
  33. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961 (1999). [CrossRef]
  34. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited