OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5193–5204

Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5193-5204 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1024 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



SOI CMOS compatible Si waveguide photodetectors are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. Photodiodes have a bandwidth of >35 GHz, an internal quantum efficiency of 0.5 to 10 AW-1, and leakage currents of 0.5 nA to 0.5 μA. Phototransistors have an optical response of 50 AW-1 with a bandwidth of 0.2 GHz. These properties are related to carrier mobilities in the implanted Si waveguide. These detectors exhibit low optical absorption requiring lengths from <0.3 mm to 3 mm to absorb 50% of the incoming light. However, the high bandwidth, high quantum efficiency, low leakage current, and potentially high fabrication yields, make these devices very competitive when compared to other detector technologies.

© 2009 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.5170) Optical devices : Photodiodes
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: February 3, 2009
Revised Manuscript: February 25, 2009
Manuscript Accepted: February 25, 2009
Published: March 18, 2009

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, "Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response," Opt. Express 17, 5193-5204 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak1, M. J. Paniccia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent waveguide photodetector," Opt. Express 15, 6044-6052 (2007). [CrossRef] [PubMed]
  2. L. Chen, P. Dong, and M. Lipson., "High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding," Opt. Express 16, 11513-11518 (2008). [CrossRef] [PubMed]
  3. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, "31GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate," Opt. Express 15, 13965-13971 (2007). [CrossRef] [PubMed]
  4. D. Ahn, C. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, "High performance waveguide integrated Ge photodetectors," Opt. Express 15, 3916-3921 (2007). [CrossRef] [PubMed]
  5. M. Kim, O. O. Olubuyide, J. U. Yoon, and J. L. Hoyt, "Selective Epitaxial Growth of Ge-on-Si for Photodiode Applications," ECS Transactions 16, 837-847 (2008). [CrossRef]
  6. S. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, "Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection," Appl. Phys. Lett. 93, 071108 (2008). [CrossRef]
  7. F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002). [CrossRef]
  8. A. Knights, A. House, R. MacNaughton, and F. Hopper, "Optical power monitoring function compatible with single chip integration on silicon-on-insulator," Conference on Optical Fiber Communication, Technical Digest Series 86, 705-706 (2003).
  9. Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon Technol. Lett. 18, 1882-1884 (2006). [CrossRef]
  10. M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007). [CrossRef]
  11. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, "All silicon infrared photodiodes: photo response and effects of processing temperature," Opt. Express 15, 16886-16895 (2007). [CrossRef] [PubMed]
  12. H.Y. Fan and A. K. Ramdas, "Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959). [CrossRef]
  13. A.P. Knights, J. D. Bradley, S.H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2006). [CrossRef]
  14. S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999). [CrossRef]
  15. T. Baehr-Jones, M. Hochberg, and A. Scherer, "Photodetection in silicon beyond the band edge with surface states," Opt. Express 16,1659-1668 (2008). [CrossRef] [PubMed]
  16. K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, "Traveling-wave photodetectors," IEEE Photon. Technol. Lett. 4, 1363-1365 (1992). [CrossRef]
  17. S. J. Spector, M. W. Geis, G.-R. Zhou, M. E. Grein, F. Gan, M.A. Popovi, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. X. Kärtner and T. M. Lyszczarz, "CMOS-compatible dual-output silicon modulator for analog signal processing," Opt. Express 16, 11027-11031 (2008). [CrossRef] [PubMed]
  18. A. Rose, "Performance of photoconductors," Pro.IRE 43, 1850-1869 (1955). [CrossRef]
  19. H Benenking, "Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices," IEEE Trans Elec. Dev. ED-29, 1420-1431 (1982). [CrossRef]
  20. S. M. Sze, " MOSFET" in Physics of Semiconductor Devices, second edition, (John Wiley & Sons, 1981) Chapter 8, pp. 438-446.
  21. K. V. Madhu, S. R. Kulkarni. M. Ravindra, and R. R. Damle, "Analysis of generation and annihilation of deep level defects in a silicon-irradiated bipolar junction transistor," Semicond. Sci. Technol. 22,963-969 (2007). [CrossRef]
  22. S. M. Sze, "Bipolar Transistors" in Physics of Semiconductor Devices, second edition, (John Wiley & Sons, 1981) Chapter 3, pp. 133-147.
  23. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  24. P.E. Jessop, L. K. Rowe, S. M. McFaul, A. P. Knights, N. G. Tarr, and A. Tam, "Study of the monolithic integration of sub-bandgap detection, signal amplification and optical attenuation of a silicon photonic chip," J. Mater Sci.: Meter. Electron. 20S456-S459 (2009)., [CrossRef]
  25. M. E. Grein, private communicaton.
  26. D. A. Tulchinsky, J. B. Boos, D. Park, P. G. Goetz, W. S. Rabinovich, and K. J. Williams, "High-current photodetectors as efficient, linear, and high-power RF output stages," J. Lightwave Technol. 26, 408-416 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited