OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5205–5216

Stroboscopic fluorescence lifetime imaging

Mark D. Holton, Oscar R. Silvestre, Rachel J. Errington, Paul J. Smith, Daniel R. Matthews, Paul Rees, and Huw D. Summers  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5205-5216 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a fluorescence lifetime imaging technique that uses the time integrated response to a periodic optical excitation, eliminating the need for time resolution in detection. A Dirac pulse train of variable period is used to probe the frequency response of the total fluorescence per pulse leading to a frequency roll-off that is dependent on the relaxation rate of the fluorophores. The technique is validated by demonstrating wide-field, realtime, lifetime imaging of the endocytosis of inorganic quantum dots by a cancer cell line. Surface charging of the dots in the intra-cellular environment produces a switch in the fluorescence lifetime from ~ 40 ns to < 10 ns. A temporal resolution of half the excitation period is possible which in this instance is 15 ns. This stroboscopic technique offers lifetime based imaging at video rates with standard CCD cameras and has application in probing millisecond cell dynamics and in high throughput imaging assays.

© 2009 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.0180) Medical optics and biotechnology : Microscopy
(170.1530) Medical optics and biotechnology : Cell analysis
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 6, 2009
Revised Manuscript: March 13, 2009
Manuscript Accepted: March 15, 2009
Published: March 18, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Mark D. Holton, Oscar R. Silvestre, Rachel J. Errington, Paul J. Smith, Daniel R. Matthews, Paul Rees, and Huw D. Summers, "Stroboscopic fluorescence lifetime imaging," Opt. Express 17, 5205-5216 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. S. Wouters, P. J. Verveer, and P. I. Bastiaens, "Imaging biochemistry inside cells," Trends Cell Biol. 11, 203-211 (2001). [CrossRef] [PubMed]
  2. K. Suhling, P. M. W. French, and D. Phillips, "Time resolved fluorescence microscopy," Photochem. Photobiol. Sci. 4, 13-22 (2005). [CrossRef]
  3. R. Cubeddu, P. Taroni, and G. Valentini, "Time-gated imaging system for tumor diagnosis," Opt. Eng. 32,320-324 (1993). [CrossRef]
  4. C. G. Morgan, A. C. Mitchell, and J. G. Murray, "Nanosecond Time-Resolved Fluorescence Microscopy: Principles and Practice," Proc.R. Microsc. Soc. 1, 463-466 (1990).
  5. E. P. Buurman, P. Sanders, A. Draaijer, H. C. Gertitsen, J. J. F. van Veen, P. M. Houtpt, and Y. K. Levine, "Fluorescence lifetime imaging using a confocal laser scanning microscope," Scanning 14, 155-159 (1992). [CrossRef]
  6. I. Bugiel, K. Konig, and H. Wabnitz, "Investigation of cells by fluorescence laser scanning microscopy with subnanosecond time resolution," Lasers Life Sci. 3, 47-53 (1989).
  7. X. F. Wang, T. Uchida, D. M. Coleman, and S. Minami, "A 2-dimensional fluorescence lifetime imaging-system using a gated image intensifier," Appl Spectrosc. 45, 360-366 (1991). [CrossRef]
  8. K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares, and A. K. L. Dymoke-Bradshaw, "Fluorescence lifetime imaging with picosecond resolution for biomedical applications," Opt. Lett. 23, 810-812 (1998). [CrossRef]
  9. J. R. Lakowicz, H. Szmacinskia, K. Nowaczyka, K. W. Berndta, and M. Johnson, "Fluorescence lifetime imaging," Anal. Biochem. 202, 316-330 (1992). [CrossRef] [PubMed]
  10. R. M. Clegg, G. Marriott, B. A Feddersen, E. Gratton, and T. M. Jovin, "Sensitive and rapid determinations of fluorescence lifetimes in the frequency domain in a light-microscope," Biophys. J. 57,A375-A375 (1990).
  11. D. R. Matthews, H. D. Summers, K. Njoh, R. J. Errington, P. J. Smith, P. Barber, S. Ameer-Beg, and B. Vojnovic, "Technique for measurement of fluorescence lifetime by use of stroboscopic excitation and continuous-wave detection," Appl. Opt. 45, 2115-2123 (2006). [CrossRef] [PubMed]
  12. Y. Sakai and S. Hirayama, "A fast deconvolution method to analyze fluorescence decays when the excitation pulse repetition period is less than the decay times," J. Lumin. 39, 145-151 (1988). [CrossRef]
  13. M. Müller, R. Ghauharali, K. Visscher, and G. Brakenhoff, "Double-pulse fluorescence lifetime imaging in confocal microscopy," J. Microsc. 177, 171-179 (1994). [CrossRef]
  14. H. Nyquist, "Certain topics in telegraph transmission theory," Trans. Am. Inst. Electr. Eng. 47, 617-644 (1928). [CrossRef]
  15. T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, "Imaging protein kinase Cα activation in cells," Science 283, 2085-2089 (1999). [CrossRef] [PubMed]
  16. O. Holub, M. J. Seufferheld, C. Gohlke, Govindjee, and R. M. Clegg, "Fluorescence lifetime imaging (FLI) in real time - a new technique in photosynthesis research," Photosynthetica 38, 581-599 (2000). [CrossRef]
  17. A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, "High frame rate fluorescence lifetime imaging," J. Phys. D 36, 1655-1662 (2003). [CrossRef]
  18. D. J. Stephens and V. J. Allan, "Light microscopy techniques for live cell imaging," Science 300, 82-86 (2003). [CrossRef] [PubMed]
  19. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, "In vivo imaging of quantum dots encapsulated in phospholipid micelles," Science 298, 1759-1762 (2002). [CrossRef] [PubMed]
  20. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, "Long-term multiple color imaging of live cells using quantum dot bioconjugates," Nature Biotech. 21, 47-51 (2002). [CrossRef]
  21. A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto, "Applications of T-lymphoma labelled with fluorescent quantum dots to cell tracing markers in mouse body," Biochem. and Biophys. Res. Commun. 314, 46-53 (2003). [CrossRef]
  22. Y. S. Liu, Y. H. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, "pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells," J. Phys. Chem. 111, 2872-2878 (2007).
  23. Y. H. Sun, Y. S. Liu, P. T. Vernier, C. H. Liang, S. Y. Chong, L. Marcu, and M. A. Gundersen, "Photostability and pH sensitivity of CdSe/ZnSe/ZnS quantum dots in living cells," Nanotechnology 17, 4469-4476 (2006). [CrossRef]
  24. S. J. Clarke, C. A. Hollmann, Z. Zhang, D. Suffern, S. E. Bradforth, N. M. Dimitrijevic, W. G. Minarik, and J. L. Nadeau, "Photophysics of dopamine-modified quantum dots and effects on biological systems," Nature Materials 5, 409-417 (2006). [CrossRef] [PubMed]
  25. S. R. Cordero, P. J. Carson, R. A. Estabrook, G. F. Strouse, and S. K. Buratto, "Photo-activated luminescence of CdSe Quantum dot monolayers," J. Phys. Chem. 104, 12137-12142 (2000). [CrossRef]
  26. N. E. Korunska, M. Dybiec, L. Zhukov, S. Ostapenko, and T. Zhukov, "Reversible and non-reversible photo-enhanced luminescence in CdSe/ZnS quantum dots," Semicond. Sci. Technol. 20, 876-881 (2005). [CrossRef]
  27. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, "Fluorescence intermittency in single cadmium selenide nanocrystals," Nature 383, 802-804 (1996). [CrossRef]
  28. C. D. McGuinness, K. Sagoo, D. McLoskey, and D. J. S. Birch, "A new sub-nanosecond LED at 280nm: application to protein fluorescence," Meas. Sci. Technol. 15, L19-L22 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2169 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited