OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5240–5245

Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology

Jingsi Li, Huan Wang, Xiangfei Chen, Zuowei Yin, Yuechun Shi, Yanqing Lu, Yitang Dai, and Hongliang Zhu  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5240-5245 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (540 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology.

© 2009 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 12, 2009
Revised Manuscript: March 12, 2009
Manuscript Accepted: March 13, 2009
Published: March 18, 2009

Jingsi Li, Huan Wang, Xiangfei Chen, Zuowei Yin, Yuechun Shi, Yanqing Lu, Yitang Dai, and Hongliang Zhu, "Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology," Opt. Express 17, 5240-5245 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Jia, D. Zhong, F. Wang and H. Chen, "Dynamic single-mode and modulation characteristics analyses for λ/4 phase-shifted distributed feedback lasers with chirped grating," Opt. Commun. 279, 356-363 (2007). [CrossRef]
  2. F. Pozzi, R. M. De La Rue, and M. Sorel, "Dual-Wavelength InAlGaAs- InP Laterally Coupled Distributed Feedback Laser," IEEE Photon. Technol. Lett. 18, 2563-2565 (2006). [CrossRef]
  3. M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "Recent Advances in DFB Lasers for Ultradense WDM Applications," IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004). [CrossRef]
  4. Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, "Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp," IEEE J. Sel. Top. Quantum. Electron. 11, 1112-1120 (2005). [CrossRef]
  5. H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, "Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser," IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997). [CrossRef]
  6. J. Hong, W. P. Huang, T. Makino and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994). [CrossRef]
  7. W. K. Chan, J. Chung and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988). [CrossRef]
  8. H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard and K. Magari, "Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides," IEEE J. Sel. Top. Quantum. Electron. 1, 356-362 (1995). [CrossRef]
  9. Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004). [CrossRef] [PubMed]
  10. D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004). [CrossRef]
  11. Y. Dai, X. Chen, Y. Zhang, J. Sun, and S. Xie, "Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method," OFC’ 2007, JWA28 (2007).
  12. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique," Opt. Lett. 31, 1618-1620 (2006). [CrossRef] [PubMed]
  13. Y. Dai, X. Chen, H. Ji, and S. Xie, "Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 19, 1916-1918 (2007). [CrossRef]
  14. Y. Dai and X. Chen, "DFB semiconductor lasers based on reconstruction equivalent chirp technology," Opt. Express. 15, 2348-2353 (2007). [CrossRef] [PubMed]
  15. I. P. Kaminow, "Optical Integrated Circuits: A Personal Perspective," J. Lightwave Technol. 26, 994-1004 (2008). [CrossRef]
  16. Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2007). [CrossRef]
  17. S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, "Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory," IEEE J. Quantum Electron. 30, 2477-2484 (1994). [CrossRef]
  18. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar and C. J. Armistead, "The design and assessment of l/4 phase shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited