OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5298–5310

Two-photon photodetector in a multiquantum well GaAs laser structure at 1.55μm

D. Duchesne, L. Razzari, L. Halloran, R. Morandotti, A. J. SpringThorpe, D. N. Christodoulides, and D. J. Moss  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5298-5310 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report two-photon photocurrent in a GaAs/AlGaAs multiple quantum well laser at 1.55μm. Using 1ps pulses, a purely quadratic photocurrent is observed. We measure the device efficiency, sensitivity, as well as the two-photon absorption coefficient. The results show that the device has potential for signal processing, autocorrelation and possibly two-photon source applications at sub-Watt power levels.

© 2009 Optical Society of America

OCIS Codes
(040.4200) Detectors : Multiple quantum well
(190.4180) Nonlinear optics : Multiphoton processes
(230.4320) Optical devices : Nonlinear optical devices
(230.5170) Optical devices : Photodiodes

ToC Category:

Original Manuscript: January 15, 2009
Revised Manuscript: March 13, 2009
Manuscript Accepted: March 16, 2009
Published: March 19, 2009

D. Duchesne, L. Razzari, L. Halloran, R. Morandotti, A. J. Spring Thorpe, D. N. Christodoulides, and D. J. Moss, "Two-photon photodetector in a multiquantum well GaAs laser structure at 1.55μm," Opt. Express 17, 5298-5310 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Liu, K. M. Yoo, and R. R. Alfano, "Ultrafast laser pulse transmission and imaging through biological tissues," Appl. Opt. 32, 554-558 (1993). [CrossRef] [PubMed]
  2. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, "Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses," Opt. Commun. 281, 1841-1849 (2008). [CrossRef]
  3. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000). [CrossRef]
  4. S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003). [CrossRef]
  5. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett. 22, 1344-1346 (1997). [CrossRef]
  6. S. Radic, D. J. Moss, and B. J. Eggleton, "Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools," in Optical Fiber Telecommunications V: Components and Sub-systems, I. P. Kaminow, T. Li, and A. E. Willner, ed., (Academic Press, Oxford, UK, 2008), Chap. 20. [CrossRef]
  7. P. J. Maguire, L. P. Barry, T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan and H. Folliot, "Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network," J. Lightwave Technol. 24, 2683-2692 (2006). [CrossRef]
  8. C. Dorrer, "High-speed measurements for optical telecommunication systems," IEEE J. Sel. Top. Quantum Electron. 12, 843-858 (2006). [CrossRef]
  9. S. Wielandy, M. Fishteyn, and B. Zhu, "Optical performance monitoring using nonlinear detection," J. Lightwave Technol. 22, 784-793 (2004). [CrossRef]
  10. H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B. D. Soole, E. Colas, H. P. Leblanc, N. C. Andreadakis, M. S. Kims and W. Sibbett, "GaAs/GaAlAs multiquantum well waveguides for all-optical switching at 1.55 μm," Electron. Lett. 27, 1993-1995 (1991). [CrossRef]
  11. Z. Zheng, A. M. Weiner, J. H. Marsh, and M. M. Karkhanehchi, "Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors," IEEE Photon. Technol. Lett. 9, 493-495 (1997). [CrossRef]
  12. R. Salem, M. A. Foster, A. C. Turner, G. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008). [CrossRef]
  13. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, "Multiple-shot and single-shot sutocorrelator based on 2-photon conductivity in semiconductors," Opt. Lett. 17, 658-660 (1992). [CrossRef] [PubMed]
  14. F. R. Laughton, J. H. Marsh, and A. H. Kean, "Very sensitive two-photon absorption GaAs/AlGaAs waveguide detector for an autocorrelator," Electron. Lett. 28, 1663-1665 (1992). [CrossRef]
  15. F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, "The two-photon absorption semiconductor waveguide autocorrelator," IEEE J. Quantum Electron. 30, 838-845 (1994). [CrossRef]
  16. H. K. Tsang, L. Y. Chan, J. B. D. Soole, H. P. LeBlanc, M. A. Koza, and R. Bhat, "High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides," Electron. Lett. 31, 1773-1775 (1995). [CrossRef]
  17. H. Schneider, T. Maier, H. C. Liu, and M. Walther, "Two-photon photocurrent autocorrelation using intersubband transitions at nearly-resonant excitation," Opt. Express 16, 1523-1528 (2008). [CrossRef] [PubMed]
  18. F. Chatenoud, K. Dzurko, M. Dion, D. J. Moss, R. Barber, and D. Landheer, "GaAs/AlGaAs multiple quantum well lasers for monolithic integration with optical modulators," Can. J. Phys. 69, 491-496 (1991). [CrossRef]
  19. D. Moss, F. Chatenoud, S. Charbonneau, A. Delage, D. Landheer, and R. Barber, "Laser compatible waveguide modulators," Can. J. Phys. 69, 497-507 (1991). [CrossRef]
  20. D. J. Moss, D. Landheer, D. Halliday, S. Charbonneau, R. Barber, F. Chatenoud and D. Conn, "High speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure," IEEE Photon. Technol. Lett. 4, 609-611 (1992). [CrossRef]
  21. D. Moss, D. Landheer, A. Delage, F. Chatenoud, and M. Dion, "Laser compatible waveguide electroabsorption modulator with high contrast and low operating voltage in GaAs/AlGaAs," IEEE Photon. Technol. Lett. 3, 645-647 (1991). [CrossRef]
  22. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham and W. Y. Jan, "Quantum-well carrier sweep out - relation to electroabsorption and exciton saturation," IEEE J. Quantum Electron. 27, 2281-2295 (1991). [CrossRef]
  23. T. H. Wood, J. Z. Pastalan, C. A. Burrus, Jr., B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren and M. G. Young, "Electric-field screening by photogenerated holes in multiple quantum wells - A new mechanism for absorption saturation," Appl. Phys. Lett. 57, 1081-1083 (1990). [CrossRef]
  24. D. J. Moss, T. Ido, and H. Sano, "Calculation of photogenerated carrier escape times in GaAs/AlGaAs quantum wells," IEEE J. Quantum Electron. 30, 1015-1026 (1994). [CrossRef]
  25. D. P. Halliday, D. Moss, S. Charbonneau, G. Aers, F. Chatenoud, and D. Landheer, "Time resolved photo luminescence studies in a reverse biased QW laser structure," Appl. Phys. Lett. 61, 2497-2499 (1992). [CrossRef]
  26. T. Ido, H. Sano, S. Tanaka, D. J. Moss, and H. Inoue, "Performance of strained InGaAs/InAlAs multiple-quantum-well electroabsorption modulators," J. Lightwave Technol. 14, 2324 -2331 (1996). [CrossRef]
  27. T. Ido, H. Sano, D. J. Moss, S. Tanaka and A. Takai, "Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage," IEEE Photon. Technol. Lett. 6, 1207-1209 (1994). [CrossRef]
  28. D. J. Moss, T. Ido, and H. Sano, "Photogenerated carrier sweep out times in strained InxGa1-xAs/InyAs1-yAs quantum well waveguide modulators at λ=1.55 μm," Electron. Lett. 30, 405-406 (1994). [CrossRef]
  29. D. J. Moss, M. Aoki, and H. Sano, "Comparison of photoconductive response times of InGaAs/InAlAs and InGaAs/InGaAsP MQW waveguide modulators," Jpn. J. Appl. Phys. 33,328-330 (1994). [CrossRef]
  30. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The nonlinear optical properties of AlGaAs at the half band gap," IEEE J. Quantum Electron. 33, 341-348 (1997). [CrossRef]
  31. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, "Nonlinear absorption in a GaAs waveguide just above half the band gap," IEEE J. Quantum Electron. 30, 1172-1175 (1994). [CrossRef]
  32. H. M. van Driel, "Semiconductor optics - On the path to entanglement," Nat. Photonics 2, 212-213 (2008). [CrossRef]
  33. A. Larsson, P. A. Andrekson, S. T. Eng and A. Yariv, "Tunable superlattice p-i-n photodetectors: characteristics, theory, and applications," IEEE J. Quantum Electron. 24, 787-801 (1988). [CrossRef]
  34. N. Holonyak, R. M. Kolbas, R. D. Dupuis and P. D. Dapkus, "Quantum-well heterostructure lasers," IEEE. J. Quantum Electron. 16, 170-186 (1980). [CrossRef]
  35. A. Yariv and P. Yeh, Photonics: optical electronics in modern communications, (Oxford University Press, New York, 2006).
  36. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burrus, "Band-edge elecroabsorption in quantum well structures: the quantum confined stark effect," Phys. Rev. Lett. 53, 2173-2176 (1984). [CrossRef]
  37. M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson and M. G. Young, "Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides," J. Appl. Phys. 71,1927-1935 (1992). [CrossRef]
  38. A. D. Lad, P. P. Kiran, D. More, G. R. Kumar, and S. Mahamuni, "Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures," Appl. Phys. Lett. 92, 043126 (2008). [CrossRef]
  39. H.-S. Chen, S.-L. Liu, and C. C. Yang, "Enhancement of multi-photon processes with carrier injection in a GaAs/AlGaAs quantum well laser structure," Opt. Commun. 235, 163-167 (2004). [CrossRef]
  40. A. Shimizu, T. Ogawa and H. Sakaki, "Two-photon absorption spectra of quasi-low-dimensional exciton systems," Phys. Rev. B 45, 11339-11341 (1992). [CrossRef]
  41. J. B. Khurgin, "Nonlinear response of the semiconductor quantum-confined structures near and below the middle of the bandgap," J. Opt. Soc. Am. B 11, 624-631 (1994). [CrossRef]
  42. H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, and J. F. Donegan and L. P. Barry, "Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation," J. Opt. Soc. Am. B 19, 2396-2402 (2002). [CrossRef]
  43. F. R. Laughton, J. H. Marsh and J. S. Roberts, "Intuitive model to include the effect of free-carrier absorption in calculating the two-photon absorption coefficient," Appl. Phys. Lett. 60, 166-168 (1992). [CrossRef]
  44. A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, "Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs," Appl. Phys. Lett. 62, 2465-2467 (1993). [CrossRef]
  45. C. C. Yang, A. Villeneuve, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, "Anisotropic Two-Photon Transitions in GaAs/AlGaAs Multiple Quantum Well Waveguides," IEEE J. Quantum Electron. 29, 2934-2939 (1993). [CrossRef]
  46. D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, "Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses," Opt. Photonics News 9, 8142-8144 (1998).
  47. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett 81, 1323-1325 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited