OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5311–5320

Gap plasmon mode of eccentric coaxial metal waveguide

Reuven Gordon, Asif I. K. Choudhury, and Tao Lu  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5311-5320 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The gap plasmon mode of an eccentric coaxial waveguide is analyzed by the effective index method. The results agree-well with fully-vectorial numerical calculations. In the eccentric structure, there is extreme subwavelength field localization around the narrowest gap due to the gap plasmon. Furthermore, the effective index of the lowest-order waveguide mode increases considerably, for example, to 3.7 in the structure considered with a 2 nm minimum gap. The nanostructure waveguide geometry and wavelength (4 μm) are comparable with recent experiments on coaxial structures, except that that position of the center island is shifted for the eccentric coaxial structure; therefore, the proposed structure is a good candidate for future fabrication and experiments. In the visible regime, the effective index increases to over 10 for the same structure. The influence of symmetry-breaking in the eccentric coaxial structure is discussed as a way to enhance the local field and improve optical coupling.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: January 15, 2009
Revised Manuscript: February 27, 2009
Manuscript Accepted: March 17, 2009
Published: March 19, 2009

Reuven Gordon, Asif I. K. Choudhury, and Tao Lu, "Gap plasmon mode of eccentric coaxial metal waveguide," Opt. Express 17, 5311-5320 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  2. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  3. H. Cao and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664-3672 (2004). [CrossRef] [PubMed]
  4. M. Sarrazin and J. P. Vigneron, "Polarization effects in metallic films perforated with a bidimensional array of subwavelength rectangular holes," Opt. Commun. 240, 89-97 (2004). [CrossRef]
  5. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004). [CrossRef]
  6. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005). [CrossRef]
  7. R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005). [CrossRef] [PubMed]
  8. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005). [CrossRef] [PubMed]
  9. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006). [CrossRef]
  10. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007). [CrossRef]
  11. W. Zhang, "Resonant terahertz transmission in plasmonic arrays of subwavelength holes," European Physical Journal-Applied Physics 43, 1-18 (2008). [CrossRef]
  12. A. Roberts and R. C. McPhedran, "Bandpass grids with annular apertures," IEEE Trans. Antennas Propag. 36, 607-611 (1988). [CrossRef]
  13. F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002). [CrossRef]
  14. F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003). [CrossRef]
  15. J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, "Annular aperture arrays: study in the visible region of the electromagnetic spectrum," Opt. Lett. 30, 1611-1613 (2005). [CrossRef] [PubMed]
  16. Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006). [CrossRef]
  17. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006). [CrossRef]
  18. W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Express 13, 4406-4413 (2005). [CrossRef] [PubMed]
  19. W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005). [CrossRef] [PubMed]
  20. A. Moreau, G. Granet, F. I. Baida, and D. Van Labeke, "Light transmission by subwavelength square coaxial aperture arrays in metallic films," Opt. Express 11, 1131-1136 (2003). [CrossRef] [PubMed]
  21. S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, "Enhanced optical transmission: Role of the localized surface plasmon," Appl. Phys. Lett. 93, 3 (2008).
  22. H. Y. Yee and N. F. Audeh, "Cutoff frequencies of eccentirc waveguides," IEEE Trans. Microwave Theory Tech. 14, 487 (1966). [CrossRef]
  23. E. Abaka and W. Baier, "TE and TM modes in transmission lines with circular outer conductor and eccentric circular innder conductor," Electron. Lett. 5, 251 (1969). [CrossRef]
  24. B. N. Das and S. B. Chakrabarty, "Evaluation of cut-off frequencies of higher order modes in eccentric coaxial line," IEE Proc. Microwaves Antennas Propag. 142, 350-356 (1995). [CrossRef]
  25. B. N. Das and S. B. Chakrabarty, "Electromagnetic analysis of eccentric coaxial cylinders of finite length," J. Inst. Electron. Telecom. Eng. 42, 63-68 (1996).
  26. S. C. Zhang, "Eigenfrequency shift of higher-order modes in a coaxial cavity with eccentric inner rod," Int. J. Infrared Millim. Waves 22, 577-583 (2001). [CrossRef]
  27. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004). [CrossRef] [PubMed]
  28. J. Y. Chu, T. J. Wang, J. T. Yeh, M. W. Lin, Y. C. Chang, and J. K. Wang, "Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays," Appl. Phys. A-Matter Sci. Process. 89, 387-390 (2007). [CrossRef]
  29. R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo, "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005). [CrossRef] [PubMed]
  30. A. Degiron and T. W. Ebbesen, "The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures," J. Opt. A-Pure Appl. Opt. 7, S90-S96 (2005). [CrossRef]
  31. Y. M. Strelniker, "Theory of optical transmission through elliptical nanohole arrays," Phys. Rev. B 76, 085409 (2007). [CrossRef]
  32. J. B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121401 (2006). [CrossRef]
  33. R. C. Compton, R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Diffraction properties of a bandpass grid," Infrared Phys. 23, 239-245 (1983). [CrossRef]
  34. R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, "Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures," Opt. Lett. 32, 3414-3416 (2007). [CrossRef] [PubMed]
  35. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, "Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice," Appl. Phys. Lett. 91, 063108 (2007). [CrossRef]
  36. Y. H. Ye, Z. B. Wang, D. S. Yan, and J. Y. Zhang, "Role of shape in middle-infrared transmission enhancement through periodically perforated metal films," Opt. Lett. 32, 3140-3142 (2007). [CrossRef] [PubMed]
  37. E. Jin and X. Xu, "Radiation transfer through nanoscale apertures," J. Quantum Spectrosc. Radiat. Transfer 93, 163-173 (2005). [CrossRef]
  38. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, C. Lienau, Q. H. Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006). [CrossRef] [PubMed]
  39. M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Phys. Lett. A 365, 510-513 (2007). [CrossRef]
  40. L. K. S. Kumar and R. Gordon, "Overlapping double-hole nanostructure in a metal film for localized field enhancement," IEEE J. Sel. Top. Quantum Electron. 12, 1228-1232 (2006). [CrossRef]
  41. L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, "Double nanohole apex-enhanced transmission in metal films," Appl. Phys. B-Lasers Opt. 84, 25-28 (2006). [CrossRef]
  42. M. Airola, Y. Liu, and S. Blair, "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A-Pure Appl. Opt. 7, S118-S123 (2005). [CrossRef]
  43. J. H. Kim and P. J. Moyer, "Transmission characteristics of metallic equilateral triangular nanohole arrays," Appl. Phys. Lett. 89, 121106 (2006). [CrossRef]
  44. T. Xu, X. Jiao, G. P. Zhang, and S. Blair, "Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement," Opt. Express 15, 13894-13906 (2007). [CrossRef] [PubMed]
  45. R. Gordon, L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Trans. Nanotechnol. 5, 291-294 (2006). [CrossRef]
  46. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004). [CrossRef]
  47. C. Yeh and F. I. Shimabukuro, The Essence of Dielectric Waveguides (Springer New York, 2008). [CrossRef]
  48. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972). [CrossRef]
  49. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006). [CrossRef]
  50. A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88, 261104 (2006). [CrossRef]
  51. K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia, "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276, 8-13 (2007). [CrossRef]
  52. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett. 4, 2015-2018 (2004). [CrossRef]
  53. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999). [CrossRef]
  54. A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, "Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film," J. Phys. Chem. C 111, 2347-2350 (2007). [CrossRef]
  55. Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, "Localized Raman enhancement from a double-hole nanostructure in a metal film," J. Phys. Chem. C 112, 15098-15101 (2008). [CrossRef]
  56. T. H. Reilly, S. H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, "Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays," J. Phys. Chem. C 111, 1689-1694 (2007). [CrossRef]
  57. R. Quidant, and C. Girard, "Surface-plasmon-based optical manipulation," Laser Photon. Rev. 2, 47-57 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited