OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5379–5390

Optical properties of photonic crystal heterostructure cavity lasers

Antonios V. Giannopoulos, Yu-Jia Li, Christopher M. Long, Jian-Ming Jin, and Kent D. Choquette  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5379-5390 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (755 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design, fabricate, and test photonic crystal heterostructure cavity lasers in the InP material system. A heterostructure cavity is formed by interfacing two different photonic crystals such that a dispersion maximum of the inner lattice lies within the band gap of the surrounding lattice. Feedback to slow light modes of the central region results in a lower threshold and single mode operation. The use of a kagome lattice as the inner defect area increases the semiconductor volume as well as the modal overlap with the gain material. We use a simulation technique to verify experimentally observed single mode operation as well as to quantify the effects of the heterostructure cavity formation.

© 2009 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 2, 2009
Revised Manuscript: March 15, 2009
Manuscript Accepted: March 16, 2009
Published: March 20, 2009

Antonios V. Giannopoulos, Yu-Jia Li, Christopher M. Long, Jian-Ming Jin, and Kent D. Choquette, "Optical properties of photonic crystal heterostructure cavity lasers," Opt. Express 17, 5379-5390 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819-1821 (1999). [CrossRef] [PubMed]
  2. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38,1353-1365 (2002). [CrossRef]
  3. Y. Akahane, T. Asanao, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003). [CrossRef]
  4. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI [CrossRef] [PubMed]
  5. K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, "Photonic crystal point-shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843-845 (2005). [CrossRef]
  6. H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs" Appl. Phys. Lett. 80, 3476-3478 (2002). [CrossRef]
  7. C. Monat, C. Seassal, X. Letartre. P Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert. E. Jalaguier, S. Pocas, and B. Aspar, "InP based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5103 (2002). [CrossRef]
  8. H. Y. Ryu, M. Notomi, Y. H. Lee, "Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab," Phys. Rev. B 68, 045209-1-9 (2003). [CrossRef]
  9. S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12,5356-5361 (2004), http://www.opticsinfobase.org/oe/abstract. [CrossRef] [PubMed]
  10. X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005). [CrossRef]
  11. F. Bordas, M. J. Steel, C. Seassal, and A. Rahamani, "Confinement of band-edge modes in a photonic crystal slab," Opt. Express 15,10890-10902 (2007), http://www.opticsinfobase.org/oe/abstract. [CrossRef] [PubMed]
  12. H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, "In-Plane Coupling of Light From InP-Based Photonic Crystal Band-Edge Lasers Into Single-Mode Waveguides," IEEE J. Quantum Electron. 43, 279-286 (2007). [CrossRef]
  13. A. V. Giannopoulos, C. Long, and K. D. Choquette, "Photonic Crystal Heterostructure Cavity Lasers using Kagome Lattices," Electron. Lett. 44, 803-804 (2008). [CrossRef]
  14. Y. J. Li and J. M. Jin, "A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propag. 54, 3000-3009 (2006). [CrossRef]
  15. Y. J. Li and J. M. Jin, "Fast full-wave analysis of large-scale three-dimensional photonic crystal devices," J. Opt. Soc. Am. B 24, 2406-2415 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited