OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5402–5413

Dynamical model for self-organized fiber laser arrays

Jianqiu Cao, Qisheng Lu, Jing Hou, and Xiaojun Xu  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5402-5413 (2009)
http://dx.doi.org/10.1364/OE.17.005402


View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dynamics model of self-organized fiber laser arrays is presented in this paper. The model does not only break the limitation of the standard slowly varying wave approximation, but also be built on the basis of Maxwell-Bloch equations which make this model more suitable to study the dynamics (especially phase dynamics) of fiber laser arrays. In this paper, this model is applied to analyze fiber laser array of interferometric configuration. The results agree well with the reported experimental results. It is also revealed that the coupling strength of 2-fiber laser array of interferometric configuration have a negligible effect on the phase-locked state of the array.

© 2009 Optical Society of America

OCIS Codes
(140.3290) Lasers and laser optics : Laser arrays
(140.3430) Lasers and laser optics : Laser theory
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 13, 2009
Revised Manuscript: March 5, 2009
Manuscript Accepted: March 5, 2009
Published: March 20, 2009

Citation
Jianqiu Cao, Qisheng Lu, Jing Hou, and Xiaojun Xu, "Dynamical model for self-organized fiber laser arrays," Opt. Express 17, 5402-5413 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5402


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005).
  2. Y. Li and D. Fan, "Beam combining of fiber laser," Laser Optoelectron. Prog. 42, 26-29 (2005). (in Chinese)
  3. J. Cao, X. Xu, J. Hou and Q. Lu, "Coheret combining technology of fiber laser," Infrared Laser Eng. 37, 456-460 (2008). (in Chinese)
  4. D. Sabourdy, V. Kermene, A. Desfarges-Berthelemot, L. Lefort, A. Barthelemy, P. Even, and D. Pureur, "Efficient coherent combining of widely tunable fiber lasers" Opt. Express 11, 87-97 (2003). [PubMed]
  5. A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, "Coherent addition of fiber lasers by use of a fiber coupler," Opt. Express 10, 1167-1172 (2002). [PubMed]
  6. A. Shirakawa, K. Matsuo, and K. Ueda, "Fiber-laser coherent array for power scaling of single-mode fiber laser," Proc. SPIE 5662, 482-487 (2004).
  7. A. Shirakawa, K. Matsuo, and K. Ueda, "Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control," Proc. SPIE 5709, 165-174 (2005).
  8. M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunnings, D. L. Hammon, A. J. Solis, and L. Vaughan, "Self-organized coherence in fiber laser arrays," Proc. SPIE 5335, 89-97 (2004).
  9. H. Bruesselbach, M. Minden, J. L. Rogers, D. C. Jones, and M. S. Mangir, "200 W self-organized coherent fiber arrays" in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonics Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMDD4.
  10. H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J. L. Rogers, "Self-organized coherence in fiber laser arrays," Opt. Lett. 30, 1339-1341 (2005). [PubMed]
  11. S. Chen, Y. Li, and K. Lu, "Branch arm filtered coherent combining of tunable fiber lasers," Opt. Express 13, 7878-7883 (2005). [PubMed]
  12. S. Chen, Y. Li, K. Lu, and S. Zhou, "Efficient coherent combining of tunable erbium-doped fibre ring lasers," J. Opt. A 9, 642-648 (2007).
  13. M. Fridman, V. Eckhouse, N. Davidson, and A. Friesem, "Efficient coherent addition of fiber lasers in free space," Opt. Lett. 32, 790-792(2007). [PubMed]
  14. Bing Lei and Ying Feng, "Phase locking of an array of three fiber lasers by an all-fiber coupling loop" Opt. Express 15, 17114-17119 (2007). [PubMed]
  15. A. E. Siegman, "Resonant modes of linearly coupled multiple fiber laser structures," http://www.stanford.edu/~siegman/coupled_fiber_modes.pdf.
  16. J. Cao, J. Hou, Q. Lu, and X. Xu, "Numerical research on self-organized coherent fiber laser arrays with circulating field theory," J. Opt. Soc. Am. B 25, 1187-1192 (2008).
  17. J. L. Rogers, S. Pele¡s, and K. Wiesenfeld, "Model for High-Gain Fiber Laser Arrays," IEEE J. Quantum Electron. 41, 767-773 (2005).
  18. S. Pele¡s, J. L. Rogers, and K. Wiesenfeld, "Robust synchronization in fiber laser arrays," Phys. Rev. E 73, 026212 (2006).
  19. D. Tsygankov and K. Wiesenfeld, "Weak-link synchronization," Phys. Rev. E 73, 026222 (2006).
  20. L. Fabiny, P. Colet, and R. Roy, "Coherence and phase dynamics of spatially coupled solid-state lasers," Phys. Rev. A 47, 4287- 4296 (1993). [PubMed]
  21. K. Thornberg Jr., M. Moller, and R. Roy, "Chaos and coherence in coupled lasers," Phys. Rev. E 55, 3865-3869 (1997).
  22. Y. Braiman, T. Kennedy, K. Wiesenfeld, and A. Khibnik, "Entrainment of solid-state laser arrays," Phys. Rev. A 52, 1500- 1506 (1995). [PubMed]
  23. J. Terry, K. ThornburgJr., D. DeShazer, G. VanWiggeren, S. Zhu, P. Ashwin, and R. Roy, "Synchronization of chaos in an array of three lasers," Phys. Rev. E 59, 4036- 4043 (1999).
  24. J. Cao, Q. Lu, X. Xu, and J. Hou, "Chaos in coupled lasers with low-frequency modulation," Appl. Phys. B 92, 525-528 (2008).
  25. E. M. Pessina, F. Prati, J. Redondo, E. Rolda’n, and G. J. de Valca’rcel, "Multimode instability in ring fiber lasers," Phys. Rev. A 60, 2517- 2528 (1999).
  26. C. Weiss and R. Vilaseca, Dynamics of Lasers (VCH, New York, 1991).
  27. G. P. Agraval, Applications of nonlinear fiber optics (Elsevier Science, USA, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited