OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5439–5445

Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 μm using cavity-confined slow light

Frédéric Bordas, Christian Seassal, Emmanuel Dupuy, Philipe Regreny, Michel Gendry, Pierre Viktorovich, M. J. Steel, and Adel Rahmani  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5439-5445 (2009)
http://dx.doi.org/10.1364/OE.17.005439


View Full Text Article

Enhanced HTML    Acrobat PDF (223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have designed, fabricated, and characterized an InP photonic crystal slab structure that supports a cavity-confined slow-light mode, i.e. a bandgap-confined valence band-edge mode. Three dimensional finite difference in time domain calculations predict that this type of structure can support electromagnetic modes with large quality factors and small mode volumes. Moreover these modes are robust with respect to fabrication imperfections. In this paper, we demonstrate room-temperature laser operation at 1.5 μm of a cavity-confined slow-light mode under pulsed excitation. The gain medium is a single layer of InAs/InP quantum dots. An effective peak pump power threshold of 80 μW is reported.

© 2009 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 8, 2009
Revised Manuscript: February 20, 2009
Manuscript Accepted: February 22, 2009
Published: March 20, 2009

Citation
Frédéric Bordas, Christian Seassal, Emmanuel Dupuy, Philippe Regreny, Michel Gendry, Pierre Viktorovitch, M. J. Steel, and Adel Rahmani, "Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 μm using cavity-confined slow light," Opt. Express 17, 5439-5445 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5439


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals 2nd edition (Springer, 2004).
  3. Y. Akahane, T. Asano, B. -S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  4. Y. Akahane, T. Asano, B. -S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1202. [CrossRef] [PubMed]
  5. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of Modified Single Defect Two Dimensional Photonic Crystal Lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002). [CrossRef]
  6. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP based two dimensional photonic crystal on silicon : In plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002). [CrossRef]
  7. A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, "Low threshold edge emitting polymer distributed feedback laser based on a square lattice," Appl. Phys. Lett. 86, 161102 (2005). [CrossRef]
  8. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, "Multidirectionally distributed feedback photonic crystal lasers," Phys. Rev. B 65, 195306 (2002). [CrossRef]
  9. B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surface emitting microlaser combining two dimensional photonic crystal membrane and vertical Bragg mirror," Appl. Phys. Lett. 88, 081113 (2006). [CrossRef]
  10. K. Srinivasan, P. E. Barclay, and O. Painter, "Fabrication-tolerant high quality factor photonic crystal microcavities," Opt. Express 12, 1458-1463 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-7-1458. [CrossRef] [PubMed]
  11. S.-H. Kwon, S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-22-5356. [CrossRef] [PubMed]
  12. S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, "Microlasers based on effective index confined slow light modes in photonic crystal waveguides," Opt. Express 16, 6331-6339 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-9-6331. [CrossRef] [PubMed]
  13. F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, "Confinement of band-edge modes in a photonic crystal slab," Opt. Express 15, 10890-10902 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-17-10890. [CrossRef] [PubMed]
  14. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuˇckovi’c, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  15. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  16. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  17. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006). [CrossRef] [PubMed]
  18. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vuckovic, "Dynamics of quantum dot photonic crystal lasers," Appl. Phys. Lett. 90, 151102 (2007). [CrossRef]
  19. http://www.rsoftdesign.com

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited