OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5496–5501

Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals

Ivan Mukhin, Oleg Palashov, and Efim Khazanov  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5496-5501 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The first measurements of thermally induced depolarization in a [110] oriented cubic crystal at powerful heat release were made. It was demonstrated that depolarization in a crystal with such orientation may be less than in analogous crystals having orientation [001] or [111]. In a TGG crystal, for example, maximum depolarization value was 10% and dropped down to 3% with a further increase of radiation power in full conformity with the theoretical predictions.

© 2009 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(260.1440) Physical optics : Birefringence

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 5, 2009
Revised Manuscript: March 12, 2009
Manuscript Accepted: March 14, 2009
Published: March 23, 2009

Ivan Mukhin, Oleg Palashov, and Efim Khazanov, "Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals," Opt. Express 17, 5496-5501 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of solid-state lasers. (Leningrad: Mashinostroenie, 1986).
  2. W. Koechner, Solid-state laser engineering. (Berlin: Springer, 1999).
  3. F. W. Quelle, "Thermal distortion of diffraction-limited optical elements," Appl. Opt. 5, 633-637 (1966). [CrossRef] [PubMed]
  4. S. D. Sims, A. Stein, and C. Roth, "Rods pumped by flash lamps," Appl. Opt. 6, 579-580 (1967). [CrossRef] [PubMed]
  5. A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, "Thermal distortion of solid state laser cavity," Prikladnaya spektroskopiya 5, 51-55 (1966).
  6. I. B.  Vitrishchak, L. N.  Soms, and A. A.  Tarasov, "On intrinsic polarizations of a resonator with thermally distorted active element," Zh. Tekhn. Fiz.,  44, 1055-1062 (1974) (in Russian).
  7. N. Gopi, T. P. S. Nathan, and B. K. Sinha, "Experimental studies of transient, thermal depolarization in a Nd:glass laser rod," Appl. Opt. 29, 2259-2265 (1990). [CrossRef] [PubMed]
  8. A. Anan'ev and N. I. Grishmanova, "Deformation of active elements of interferometer and thermooptical constant Nd: glass," Prikladnaya spektroskopiya 12, 668-673 (1970).
  9. A. A. Mak, V. M. Mit'kin, and L. N. Soms, "About thermooptical constant of doped glasses," Optiko-mechanicheskaya promishlennost 9, 65-66 (1971).
  10. J. D. Foster and L. M. Osterink, "Thermal effects in a Nd:YAG laser," J. Appl. Phys. 41, 3656-3663 (1970). [CrossRef]
  11. G. A. Massey, "Criterion for selection of cw laser host materials to increase available power in the fundamental mode," Appl. Phys. Lett. 17, 213-215 (1970). [CrossRef]
  12. W. Koechner, "Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal," Appl. Opt. 9, 1429-1434 (1970). [CrossRef] [PubMed]
  13. W. Koechner and D. K. Rice, "Effect of birefringence on the performance of linearly polarized YAG:Nd lasers," IEEE J. Quantum Electron. QE-6, 557-566 (1970). [CrossRef]
  14. M. A. Karr, "Nd:YAIG laser cavity loss due to an internal Brewster polarizer," Appl. Opt. 10, 893-895 (1971). [CrossRef] [PubMed]
  15. H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, "Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier," J. Phys. D 26, 1884-1891 (1993). [CrossRef]
  16. S. D. Jackson and J. A. Piper, "Thermally induced strain and birefringence calculations for a Nd:YAG rod encapsulated in a solid pump light collector," Appl. Opt. 35, 1409-1423 (1996). [CrossRef] [PubMed]
  17. M. Schmid, T. Graf, and H. P. Weber, "Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating," J. Opt. Soc. Am. B 17, 1398-1404 (2000). [CrossRef]
  18. W. Koechner and D. K. Rice, "Birefringence of YAG:Nd laser rods as a function of growth direction," J. Opt. Soc. Am. 61, 758-766 (1971). [CrossRef]
  19. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, "On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence," Sov. J. Quantum. Electron. 10, 350-351 (1980). [CrossRef]
  20. L. N. Soms and A. A. Tarasov, "Thermal deformation in color-center laser active elements. 1.Theory," Sov. J. Quantum. Electron. 9, 1506-1508 (1979). [CrossRef]
  21. I. Shoji and T. Taira, "Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal," Appl. Phys. Lett. 80, 3048-3050 (2002). [CrossRef]
  22. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. 81, 120-124 (2005). [CrossRef]
  23. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, "Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power," Appl. Opt. 41, 483-492 (2002). [CrossRef] [PubMed]
  24. V. Parfenov, V. Shashkin, and A. Stepanov, "Numerical investigation of thermally induced birefringence in optical elements of solid-state lasers," Appl. Opt. 32, 5243-5255 (1993). [CrossRef] [PubMed]
  25. R. W. Dixon, "Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners," J. Appl. Phys. 38, 5149 (1967). [CrossRef]
  26. A. A. Kaminskii, Laser Crystals in Russian (Nauka, Moscow 1975) pp. 256 c.
  27. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited