OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5526–5532

Compression of 200GHz DWDM channelized TDM pulsed carrier from optically mode-locking WRC-FPLD Fiber Ring at 10 GHz

Yu-Chan Lin, Guo-Hsuan Peng, and Gong-Ru Lin  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5526-5532 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The compression of 200GHz DWDM channelized optically mode-locking WRC-FPLD fiber ring pulse of at 10 GHz is performed for high-capacity TDM application. To prevent temporal and spectral crosstalk, the duty-cycle of the DWDM channelized WRC-FPLD FL pulse needs to be shortened without broadening its linewidth. With dual-cavity configuration induced DWDM channelization, a shortest single-channel WRC-FPLD FL pulsewidth of 19 ps is generated, which can be linearly compensated to 10 ps and fifth-order soliton compressed to 1.4 ps. Under a maximum pulsewidth compression ratio up to 14 and a ±100m tolerance on compressing fiber length, the single-channel pulsewidth remains <2 ps (duty-cycle <2%) with spectral linewidth only broadening from 0.29 nm to 0.8 nm. In comparison, a typical SOAFL without intra-cavity TBF in fiber ring broadens its spectral linewidth from 2.4 to 3.8 nm after compressing its mode-locked pulsewidth from 21 to 2.1 ps. The duty-cycle of the DWDM channelized WRC-FPLD FL pulsed carrier is approaching 1% to satisfy at least 256 optical TDM channels.

© 2009 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 6, 2009
Revised Manuscript: March 3, 2009
Manuscript Accepted: March 7, 2009
Published: March 23, 2009

Yu-Chan Lin, Guo-Hsuan Peng, and Gong-Ru Lin, "Compression of 200GHz DWDM channelized TDM pulsed carrier from optically modelocking WRC-FPLD Fiber Ring at 10 GHz," Opt. Express 17, 5526-5532 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Keating, J. Minch, C. S. Chang, P. Enders, W. Fang, S. L. Chuang, T. Tanbun-Ek, Y. K. Chen, and M. Sergen, "Optical gain and refractive index of a laser amplifier in the presence of pump light for cross-gain and cross-phase modulation," IEEE Photon. Technol. Lett. 9, 1358-1360 (1997). [CrossRef]
  2. C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, "All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 1168-1180 (1997). [CrossRef]
  3. H. Lee, Y. Kim, and J. Jeong, "Frequency chirping characteristics of all optical wavelength converter based on cross-gain and cross-phase modulation in semiconductor optical amplifiers," J. Korean Phys. Soc. 34, S577-S581 (1999).
  4. K. Inoue, "Modulation characteristics of a directly modulated super luminescent diode followed by a gain-saturated semiconductor optical amplifier," IEICE Trans. Electron. E 83C, 520-522 (2000).
  5. G.-R. Lin, I.-H. Chiu, and M.-C. Wu, "1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression," Opt. Express 13, 1008-1014 (2005). [CrossRef]
  6. M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling, "Theoretical and experimental study of harmonically modelocked fiber lasers for optical communication systems," J. Lightwave Technol. 18, 1565-1574 (2000). [CrossRef]
  7. C. Wu and N. K. Dutta, "High repetition rate optical pulse generation using a rational harmonic mode-locked fiber laser," IEEE J. Quantum Electron. 36, 145-150 (2000). [CrossRef]
  8. G.-H. Peng, Y.-C. Chi, and G.-R. Lin, "DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring," Opt. Express 16, 13405-13413 (2008). [CrossRef]
  9. D. H. Kim, S.- H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, "Relaxation-free harmonically mode-locked semiconductor-fiber ring laser," IEEE Photon. Technol. Lett. 11, 521-523 (1999). [CrossRef]
  10. K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast semiconductor-based fiber laser sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004). [CrossRef]
  11. H. Q. Lam, P. Shum, L. N. Binh, and Y. D. Gong, "Polarization-dependent locking in SOA harmonic mode-locked fiber laser," IEEE Photon. Technol. Lett. 18, 2404-2406 (2006). [CrossRef]
  12. K. A. Ahmed, K. C. Chan, and H. F. Liu, "Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique," IEEE J. Quantum Electron. 1, 592-600 (1995). [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics, (Academic New York, 1989) Chap. 3.
  14. G-R. Lin and I-H. Chiu, "Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz," Opt. Express 13, 8772-8780 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited