OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5645–5655

The role of dispersion in the propagation of rotating beams in left-handed materials

Qiang Lv, Hongyao Liu, Hailu Luo, Shuangchun Wen, Weixing Shu, Yanhong Zou, and Dianyuan Fan  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5645-5655 (2009)
http://dx.doi.org/10.1364/OE.17.005645


View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically study the role of dispersion in propagation of rotating beams in left-handed materials (LHMs). By modeling the rotating beam as a superposition of two rotating Laguerre-Gaussian beams with opposite chirality, same magnitude and different frequencies, we demonstrate that the rotation property of the rotating beam in LHM is significantly dependent on the sign and strength of dispersion: In the normal dispersion region, the direction of transverse energy flow is reversed compared to the vacuum, due to the negative refractive index of LHM, while in the anomalous dispersion region it may be parallel or antiparallel to that in the case of vacuum, depending on the strength of dispersion. In addition, we find that the angular momentum density can be parallel or antiparallel to the transverse energy flow in LHM, while the angular momentum flow is always opposite to the transverse energy flow.

© 2009 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics
(260.2160) Physical optics : Energy transfer
(350.5500) Other areas of optics : Propagation
(350.3618) Other areas of optics : Left-handed materials

ToC Category:
Physical Optics

History
Original Manuscript: January 9, 2009
Revised Manuscript: March 7, 2009
Manuscript Accepted: March 16, 2009
Published: March 25, 2009

Citation
Qiang Lv, Hongyao Liu, Hailu Luo, Shuangchun Wen, Weixing Shu, Yanhong Zou, and Dianyuan Fan, "The role of dispersion in the propagation of rotating beams in left-handed materials," Opt. Express 17, 5645-5655 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5645


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye and M. V. Berry, "Dislocation in wave trains," Proc. R. Soc. Lond. A 336, 165-190 (1974). [CrossRef]
  2. J. F. Nye, "The motion and structure of dislocations in wavefronts," Proc. R. Soc. Lond. A. 378, 219-239 (1981). [CrossRef]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  4. L. Allen, M. J. Padgett, and M. Babiker, "The orbit angular momentum of light," Prog. Opt. 39, 291-372 (1999). [CrossRef]
  5. M. S. Soskin and M. V. Vasnetsov, "Singular optics," Prog. Opt. 42, 219-276 (2001). [CrossRef]
  6. J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90, 133901 (2003). [CrossRef] [PubMed]
  7. C. N. Alexeyev and M. A. Yavorsky, "Angular momentum of rotating paraxial light beams," J. Opt. A: Pure Appl. Opt. 7, 416-421 (2005). [CrossRef]
  8. A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, "Angular momentum of a rotating light beam," Opt. Commun. 249, 367-378 (2005). [CrossRef]
  9. A. Ya. Bekshaev and M. S. Soskin, "Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons," Opt. Lett. 31, 2199-2201 (2006). [CrossRef] [PubMed]
  10. G. Nienhuis, "Polychromatic and rotating beams of light," J. Phys. B: At.Mol. Opt. Phys. 39, S529-S544 (2006). [CrossRef]
  11. S. J. van Enk and G. Nienhuis, "Photons in polychromatic rotating modes," Phys. Rev. A 76, 053825 (2007). [CrossRef]
  12. P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-253 (2001). [CrossRef]
  13. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particle from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995). [CrossRef] [PubMed]
  14. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys. Rev. A 54, 1593-1596 (1996). [CrossRef] [PubMed]
  15. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner," Opt. Lett. 22, 52-54 (1997). [CrossRef] [PubMed]
  16. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia1, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001). [CrossRef] [PubMed]
  17. M. P. MacDonald, K. Volke-Sepulveda, L. Paterson, J. Arlt, W. Sibbett, and K. Dholakia, "Revolving interference patterns for the rotation of optically trapped particles," Opt. Commun. 201, 21-29 (2002). [CrossRef]
  18. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of Three-Dimensional optically trapped structures," Science 296, 1101-1103 (2002). [CrossRef] [PubMed]
  19. ChristianH. J. Schmitz, Kai Uhrig, Joachim P. Spatz and, J. E. Curtis, "Tuning the orbital angular momentum in optical vortex beams," Opt. Express 14, 6604-6612 (2006). [CrossRef] [PubMed]
  20. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  21. H. Luo,W. Shu, F. Li, and Z. Ren, "Focusing and phase compensation of paraxial beams by a left-handed material slab," Opt. Commun. 266, 327-331 (2006). [CrossRef]
  22. M. J. Padgett and L. Allen, "The Poynting vector in Laguerre-Gaussian laser modes," Opt. Commun. 121, 36-40 (1995). [CrossRef]
  23. L. Allen and M. J. Padgett, "The Poynting vector in Laguerre-Gaussian beams and the interpretation of angular momentum density," Opt. Commun. 184, 67-71 (2000). [CrossRef]
  24. H. Luo, Z. Ren, W. Shu, and S. C. Wen, "Reversed propagation dynamics of Laguerre-Gaussian beams in lefthanded materials," Phys. Rev. A 77, 023812 (2008). [CrossRef]
  25. H. Luo, S. C. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, "Rotational Doppler effect in left-handed materials," Phys. Rev. A 78, 033805 (2008). [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  27. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, San Diego, CA, 1980).
  28. R. Loudon, "Theory of the forces exerted by Laguerre-Gaussian light beams on dielectrics," Phys. Rev. A 68, 013806 (2003). [CrossRef]
  29. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001) [CrossRef] [PubMed]
  30. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).
  31. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, MA, 2005).
  32. B. A. Kemp, J. A. Kong, and T. M. Grzegorczyk, "Reversal of wave momentum in isotropic left-handed media," Phys. Rev. A 75, 053810 (2007). [CrossRef]
  33. R. Loudon, L. Allen, and D. F. Nelson, "Propagation of electromagnetic energy and momentum through an absorbing dielectric," Phys. Rev. E 55, 1071-1085 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited