OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5691–5697

High-resolution spectroscopy using a frequency magnifier

Yoshitomo Okawachi, Reza Salem, Mark A. Foster, Amy C. Turner-Foster, Michal Lipson, and Alexander L. Gaeta  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5691-5697 (2009)
http://dx.doi.org/10.1364/OE.17.005691


View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate a spectral magnifier using an imaging system with two time-lenses based on four-wave mixing in a Si nanowaveguide. We achieve a magnification factor of 105 with a frequency resolution of 1 GHz. The system offers potential as a tool for single-shot, high resolution spectral measurements.

© 2009 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(300.1030) Spectroscopy : Absorption

ToC Category:
Spectroscopy

History
Original Manuscript: February 10, 2009
Revised Manuscript: March 20, 2009
Manuscript Accepted: March 20, 2009
Published: March 25, 2009

Citation
Yoshitomo Okawachi, Reza Salem, Mark A. Foster, Amy C. Turner-Foster, Michal Lipson, and Alexander L. Gaeta, "High-resolution spectroscopy using a frequency magnifier," Opt. Express 17, 5691-5697 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5691


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. H. Kolner and M. Nazarathy, "Temporal imaging with a time lens," Opt. Lett. 14,630-632 (1989). [CrossRef] [PubMed]
  2. B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30,1951-1963 (1994). [CrossRef]
  3. J. van Howe and C. Xu, "Ultrafast optical signal processing based upon space-time dualities," J. Lightwave Technol. 24,2649-2662 (2006). [CrossRef]
  4. L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, "Spectro-temporal imaging of femtosecond events," IEEE J. Quantum Electron. 36,795-801 (2000). [CrossRef]
  5. C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging Part I: System configurations," IEEE J. Quantum Electron. 36,430-437 (2000). [CrossRef]
  6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Optical time lens based on four-wave mixing on a silicon chip," Opt. Lett. 33,1047-1049 (2008). [CrossRef] [PubMed]
  7. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64,270-272 (1994). [CrossRef]
  8. N. K. Berger, B. Levit, S. Atkins, and B. Fischer, "Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation," Electron. Lett. 36,1644-1646 (2000). [CrossRef]
  9. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, "Spectro-temporal imaging of optical pulses with a single time lens," IEEE Photon. Technol. Lett. 16,882-884 (2004). [CrossRef]
  10. T. Mansuryan, A. Zeytunyan, M. Kalashyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, "Parabolic temporal lensing and spectrotemporal imaging: a femtosecond optical oscilloscope," J. Opt. Soc. Am. B 25,A101-A110 (2008). [CrossRef]
  11. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature,  456,81-84 (2008). [CrossRef] [PubMed]
  12. C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65,2513-2515 (1994). [CrossRef]
  13. C. V. Bennett and B. H. Kolner, "Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms," Opt. Lett. 24,783-785 (1999). [CrossRef]
  14. A. W. Lohmann and D. Mendlovic, "Temporal filtering with time lenses," Appl. Opt. 31,6212-6219 (1992). [CrossRef] [PubMed]
  15. P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "All-optical packet compression based on time-to-wavelength conversion," IEEE Photon. Technol. Lett. 16,1688-1690 (2004). [CrossRef]
  16. T. Sakano, K. Uchiyama, I. Shake, T. Morioka, and K. Hagimoto, "Large-dispersion-tolerance optical signal transmission system based on temporal imaging," Opt. Lett. 27,583-585 (2002). [CrossRef]
  17. M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses," IEEE Photon. Technol. Lett. 16,1059-1061 (2004). [CrossRef]
  18. V. Torres-Company, J. Lancis, and P. Andrés, "Spectral imaging system for scaling the power spectrum of optical waveforms," Opt. Lett. 32,2849-2851 (2007). [CrossRef] [PubMed]
  19. A. Papoulis, "Dual optical systems," J. Opt. Soc. Am. 58653-654 (1968). [CrossRef]
  20. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15,12949-12958 (2007). [CrossRef] [PubMed]
  21. F. Vestin, K. Nilsson, and P.-E. Bengtsson, "Validation of a rotational coherent anti-Stokes Raman spectroscopy model for cabon dioxide using high-resolution detection in the temperature range 294-1143K," Appl. Opt. 47,1893-1901 (2008). [CrossRef] [PubMed]
  22. K. A. Vereschagin, V. V. Smirnov, O, M. Stel’makh, V. I. Fabelinsky, W. Clauss, D. N. Klimenko, M. Oschwald, and A. K. Vereschagin, "Single-shot high resolution dual-broadband interferometric lineshape spectroscopy," J. Raman Spectrosc. 36,134-138 (2005). [CrossRef]
  23. M. F. DeCamp and A. Tokmakoff, "Single-shot two-dimensional spectrometer," Opt. Lett. 31,113-115 (2006). [CrossRef] [PubMed]
  24. J. Brendenbeck, J. Helbing, R. Behrendt, C. Renner, L. Morodor, J. Wachtveitl, and P. Hamm, "2D-IR spectroscopy: snapshots of the nonlinear equilibrium ensemble during the picosecond confirmation transmission of a small peptide," J. Phys. Chem. B 107,8654-8660 (2003). [CrossRef]
  25. H. R. Fetterman, P. E. Tannenwald, C. D. Parker, J. Melngailis, and R. C. Williamson, "Real-time spectral analysis of far-infrared laser pulses using a SAW dispersive delay line," Appl. Phys. Lett. 34,123-125 (1979). [CrossRef]
  26. Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33983-985 (1997). [CrossRef]
  27. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35,1661-1662 (1999). [CrossRef]
  28. S. T. Sanders, "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy," Appl. Phys. B 75,799-802 (2002). [CrossRef]
  29. J. Hult, R. S. Watt, and C. F. Kaminski, "High bandwidth absorption spectroscopy with a dispersed supercontinuum source," Opt. Express 15,11385-11395 (2007). [CrossRef] [PubMed]
  30. J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92,11102 (2008). [CrossRef]
  31. V. Torres-Company, J. Lancis, and P. Andrés, "Incoherent frequency-to-time mapping: application to incoherent pulse shaping," J. Opt. Soc. Am. A 24,888-894 (2007). [CrossRef]
  32. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14,4357-4362 (2006). [CrossRef] [PubMed]
  33. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited