OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5723–5730

The quest for magnetic plasmons at optical frequencies

Andrea Alù and Nader Engheta  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5723-5730 (2009)
http://dx.doi.org/10.1364/OE.17.005723


View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Magnetic effects are at the basis of several relevant microwave applications, e.g., imaging, computer memory modules, magneto-inductive waveguides and metamaterials. Commonly designed at low frequencies, purely natural magnetic molecules are not readily available in the visible, due to intrinsic natural limitations of optical materials. Here, using the anomalous wave interaction of electric-plasmonic nanoparticles, we consider a basic geometry that may constitute a lumped isotropic magneto-plasmonic “molecule” at optical frequencies, with applications for cloaking, imaging and optical communications.

© 2009 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.4670) Materials : Optical materials

ToC Category:
Physical Optics

History
Original Manuscript: February 20, 2009
Revised Manuscript: March 19, 2009
Manuscript Accepted: March 20, 2009
Published: March 25, 2009

Citation
Andrea Alu and Nader Engheta, "The quest for magnetic plasmons at optical frequencies," Opt. Express 17, 5723-5730 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5723


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kerker, "Founding fathers of light scattering and surface-enhanced Raman scattering," Appl. Opt. 30, 4699-4705 (1991). [CrossRef] [PubMed]
  2. C. F. Bohren D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  3. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  4. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  5. N. Engheta, "Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007). [CrossRef] [PubMed]
  6. N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005). [CrossRef] [PubMed]
  7. Alù, N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005). [CrossRef]
  8. R. P. Feynman, QED: The Strange Theory of Light and Matter (Princeton Univ. Press, 1985).
  9. L. Landau, E. M. Lifschitz, Electrodynamics of Continuous Media (Elsevier, 1984).
  10. Alù and N. Engheta, "Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles," Phys. Rev. B 78, 085112 (2008). [CrossRef]
  11. R. Merlin, "Metamaterials and the Landau-Lifshitz permeability argument: large permittivity begets high-frequency magnetism," Proc. Nat. Acad. Sc. 106, 1693-1698 (2009). [CrossRef]
  12. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007). [CrossRef]
  13. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005). [CrossRef] [PubMed]
  14. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  15. C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007). [CrossRef] [PubMed]
  16. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  17. G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004). [CrossRef]
  18. Y. A. Urzhumov, and G. Shvets, "Optical magnetism and negative refraction in plasmonic metamaterials," Solid State Commun. 146, 208-220 (2008). [CrossRef]
  19. Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, "Plasmonic nanoclusters: a path towards negative-index metafluids," Opt. Express 15, 14129-14145 (2007). [CrossRef] [PubMed]
  20. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007). [CrossRef] [PubMed]
  21. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, " Resonant field enhancements from metal nanoparticle arrays," Nano Lett. 4, 153-158 (2004). [CrossRef]
  22. Q. Wu and W. Park, "Negative index materials based on metal nanoclusters," Appl. Phys. Lett. 92, 153114 (2008). [CrossRef]
  23. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, "MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis," Phys. Rev. B 76, 195123 (2007). [CrossRef]
  24. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002). [CrossRef]
  25. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A.V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  26. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005). [CrossRef] [PubMed]
  27. A. Alù and N. Engheta, "Optical nano-transmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes," J. Opt. Soc. Am. B 23, 571-583 (2006). [CrossRef]
  28. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  29. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Metamagnetics with rainbow colors," Opt. Express 15, 3333-3341 (2007). [CrossRef] [PubMed]
  30. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, " Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Materials 2, 229-232 (2003). [CrossRef] [PubMed]
  31. W. H. Weber and G. W. Ford, " Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004). [CrossRef]
  32. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006). [CrossRef]
  33. A. Alù and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as sub-diffraction optical nanotransmission lines," Phys. Rev. B 74, 205436, (2006). [CrossRef]
  34. A. Alù and N. Engheta, "Three-dimensional nanotransmission lines at optical frequencies: A recipe for broad band negative-refraction optical metamaterials," Phys. Rev. B 75, 024304, (2007). [CrossRef]
  35. A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006). [CrossRef] [PubMed]
  36. V. Shalaev, private communication.
  37. J. D. Baena, L. Jelinek, and R. Marqués, "Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry," J. Appl. Phys. 76, 245115 (2007).
  38. R. Simovski and S. A. Tretyakov, "Model of isotropic resonant magnetism in the visible range based on core-shell clusters," Phys. Rev. B 79,045111 (2009). [CrossRef]
  39. A. Alù and N. Engheta, 2006 OSA Annual Meeting, Frontiers in Optics, Rochester, NY, USA, p. JWD19, October 8-12, 2006.
  40. A. Alù and N. Engheta, USNC/URSI National Radio Science Meeting, San Diego, CA, USA, July 5-12, 2008.
  41. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2081 (1999). [CrossRef]
  42. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," J. Appl. Phys. 92, 6252 (2002). [CrossRef]
  43. O. Sydoruk O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, "Phonon-like dispersion curves of magnetoinductive waves," Appl. Phys. Lett. 87, 072501(2005). [CrossRef]
  44. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006). [CrossRef]
  45. S. M. Wang, T. Li, H. Liu, F.M. Wang, S. N. Zhu, and X. Zhang, "Magnetic plasmon modes in periodic chains of nanosandwiches," Opt. Express 16, 3560-3565 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited