OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5774–5782

Photon statistics in the cooperative spontaneous emission

Vasily V. Temnov and Ulrike Woggon  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5774-5782 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (910 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The second-order photon correlation function g(2)(τ) of photons emitted by a continuously pumped ensemble of N two-level systems coupled to a single-mode optical cavity well below the lasing threshold is investigated theoretically. A giant photon bunching is found for N < 10 emitters as the microscopic counterpart of spontaneous emission noise driven quasi-periodic superradiant pulse sequences in macroscopic systems of large numbers of emitters N ≫ 1. The phenomenon of giant photon bunching is preserved even for N = 2 and can be explained by the cooperative evolution via dark and bright two-atom states resulting into emission of superradiant photon pairs. The sensitivity of g(2) to microscopic dephasing processes and resonance frequency detuning opens the door for photon bunching spectroscopy.

© 2009 Optical Society of America

OCIS Codes
(030.5290) Coherence and statistical optics : Photon statistics
(270.6630) Quantum optics : Superradiance, superfluorescence
(300.6250) Spectroscopy : Spectroscopy, condensed matter

ToC Category:
Coherence and Statistical Optics

Original Manuscript: December 4, 2008
Revised Manuscript: February 19, 2009
Manuscript Accepted: March 11, 2009
Published: March 26, 2009

Vasily V. Temnov and Ulrike Woggon, "Photon statistics in the cooperative spontaneous emission," Opt. Express 17, 5774-5782 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Dicke, "Coherence in Spontaneous Radiation Processes," Phys. Rev. 93, 99 (1954).
  2. R. Friedberg and S. R. Hartmann, "Temporal evolution of superradiance in a small sphere," Phys. Rev. A 10, 1728 (1974).
  3. M. Gross and S. Haroche, "Superradiance: An essay on the theory of collective spontaneous emission," Phys. Rep. 93, 301 (1982).
  4. F. Haake, J. Haus, H. King, G. Schröder, and R. Glauber, "Delay-Time Statistics and Inhomogeneous Line Broadening in Superfluorescence," Phys. Rev. Lett. 45, 558 (1980).
  5. J. J. Maki, M. S. Malcuit, M. G. Raymer, R. W. Boyd, and P. D. Drummond, "Influence of collisional dephasing processes on superfluorescence," Phys. Rev. A 40, 5135 (1989). [PubMed]
  6. E. A. Watson, H. M. Gibbs, E. P. Mattar, M. Cormier, Y. Claude, S. L. McCall, and M. S. Feld, "Quantum fluctuations and transverse effects in superfluorescence," Phys. Rev. A 27, 1427 (1983).
  7. J. H. Eberly, "Emission of one photon in an electric dipole transition of one among N atoms," J. Phys. B 39, S599 (2006).
  8. C. F. Lee and N. F. Johnson, "First-Order Superradiant Phase Transitions in a Multiqubit Cavity System," Phys. Rev. Lett.  93, 083 001 (2004).
  9. V. V. Temnov and U. Woggon, "Superradiance and Subradiance in an Inhomogeneously Broadened Ensemble of Two-Level Systems Coupled to a Low-Q Cavity," Phys. Rev. Lett.  95, 243 602 (2005).
  10. M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, "Superradiance of quantum dots," Nat. Physics 3, 106 (2007).
  11. T. Berstermann, T. Auer, H. Kurtze, M. Schwab, D. R. Yakovlev, M. Bayer, J. Wiersig, C. Gies, F. Jahnke, D. Reuter, and A. D. Wieck, "Systematic study of carrier correlations in the electron-hole recombination dynamics of quantum dots," Phys. Rev. B 76, 165 318 (2007).
  12. M. S. Malcuit, J. J. Maki, D. J. Simkin, and R. W. Boyd, "Transition from superfluorescence to amplified spontaneous emission," Phys. Rev. Lett. 59, 1189 (1987). [PubMed]
  13. R. G. DeVoe and R. G. Brewer, "Observation of Superradiant and Subradiant Spontaneous Emission of Two Trapped Ions," Phys. Rev. Lett. 76, 2049 (1996). [PubMed]
  14. G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, "Quantum State Reduction and Conditional Time Evolution of Wave-Particle Correlations in Cavity QED," Phys. Rev. Lett. 85, 3149 (2000). [PubMed]
  15. L. Schneebeli, M. Kira, and S. W. Koch, "Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy," Phys. Rev. Lett.  101, 097 401 (2008).
  16. A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, "Two-Photon Gateway in One-Atom Cavity Quantum Electrodynamics," Phys. Rev. Lett.  101, 203 602 (2008).
  17. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation between photons from a single quantum dot at room temperature," Nature 406, 968 (2005).
  18. K. Bimbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87 (2005).
  19. M. Hennrich, A. Kuhn, and G. Rempe, "Transition from Antibunching to Bunching in Cavity QED," Phys. Rev. Lett.  94, 053 604 (2005).
  20. S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett.  98, 043 906 (2007).
  21. P. Ataloni, E. De Angelis, and F. De Martini, "Bose-Einstein Partition Statistics in Superradiant Spontaneous Emission," Phys. Rev. Lett. 85, 1420 (2000).
  22. C. Benkert, M. O. Scully, J. Bergou, L. Davidovich, M. Hillery, and M. Orszag, "Role of pumping statistics in laser dynamics: Quantum Langevin approach," Phys. Rev. A 41, 2756 (1990). [PubMed]
  23. V. V. Temnov, M. I. Kolobov, and F. Haake, "Superradiant and Subradiant Behavior of the Overdamped Many-Atom Micromaser," in Directions in Quantum Optics, H. J. Carmichael, R. Glauber, and M. Scully, eds., no. 561 in Lecture Notes in Physics (Springer, Berlin, 2001), p. 261.
  24. A. A. Belyanin, V. V. Kocharovsky, and V. V. Kocharovsky, "Superradiant generation of femtosecond pulses in quantum-well heterostructures," Quantum Semiclassic. Opt. 10, L13 (1998).
  25. R. Bonifacio and L. A. Lugiato, "Cooperative radiation processes in two-level systems: Superfluorescence," Phys. Rev. A 11, 1507 (1975).
  26. K. Mølmer, Y. Castin, and J. Dalibard, "Monte Carlo wave-function method in quantum optics," J. Opt. Soc. Am. B 10, 524 (1993).
  27. G. Benivegna and A. Messina, "Sub-radiant States of a Spatially Extended System of N Two-level Atoms," J. Mod. Opt. 36, 1205 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited