OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5807–5814

Maximization of net optical gain in silicon-waveguide Raman amplifiers

Ivan D. Rukhlenko, Chethiya Dissanayake, Malin Premaratne, and Govind P. Agrawal  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5807-5814 (2009)
http://dx.doi.org/10.1364/OE.17.005807


View Full Text Article

Enhanced HTML    Acrobat PDF (113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel method for maximizing signal gain in continuously pumped silicon-waveguide Raman amplifiers made with silicon-on-insulator technology. Our method allows for pump-power depletion during Raman amplification and makes use of a variational technique. Its use leads to a system of four coupled nonlinear differential equations, whose numerical solution provides the optimal axial profile of the effective mode area along the waveguide length that maximizes the output signal power for a given amplifier length and a preset input (or output) cross-section area. In practice, the optimum profile can be realized by varying the cross-section area of a silicon waveguide along its length by tapering its width appropriately.

© 2009 Optical Society of America

OCIS Codes
(230.4320) Optical devices : Nonlinear optical devices
(230.7370) Optical devices : Waveguides
(250.4390) Optoelectronics : Nonlinear optics, integrated optics
(230.4480) Optical devices : Optical amplifiers
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Optoelectronics

History
Original Manuscript: December 23, 2008
Revised Manuscript: March 20, 2009
Manuscript Accepted: March 24, 2009
Published: March 26, 2009

Citation
Ivan D. Rukhlenko, Chethiya Dissanayake, Malin Premaratne, and Govind P. Agrawal, "Maximization of net optical gain in silicon-waveguide Raman amplifiers," Opt. Express 17, 5807-5814 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5807


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Claps, D. Dimitropoulos, and B. Jalali, "Stimulated Raman scattering in silicon waveguides," Electron. Lett. 38, 1352 (2002). [CrossRef]
  2. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731 (2003). [CrossRef] [PubMed]
  3. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006). [CrossRef]
  4. C. Headley and G. P. Agrawal, Eds., Raman Amplification in Fiber-Optic Communication Systems, (Academic Press, San Diego, 2005).
  5. G. P. Agrawal, Nonlinear Fiber Optics, (Academic, Boston, 2007).
  6. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express 15, 16604 (2007). [CrossRef] [PubMed]
  7. X. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160 (2006). [CrossRef]
  8. M. Krause, H. Renner, and E. Brinkmeyer, "Analysis of Raman lasing characteristics in silicon-on-insulator waveguides," Opt. Express 12, 5703-5710 (2004). [CrossRef] [PubMed]
  9. H. Renner, M. Krause, and E. Brinkmeyer, "Maximal gain and optimal taper design for Raman amplifiers in silicon-on-insulator waveguides," in Integrated Photonics Research and Applications Topical Meetings (IPRA 2005), paper JWA3.
  10. M. Krause, H. Renner, and E. Brinkmeyer, "Efficiency increase of silicon-on-insulator Raman lasers by reduction of free-carrier absorption in tapered waveguides," in Conference on Lasers and Electro-Optics (CLEO 2005), paper CThB1.
  11. M. Krause, H. Renner, and E. Brinkmeyer, "Efficient Raman lasing in tapered silicon waveguides," Spectroscopy 21, 26-32 (2006).
  12. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115 (2005). [CrossRef]
  13. S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006). [CrossRef]
  14. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261 (2004). [CrossRef] [PubMed]
  15. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774 (2004). [CrossRef] [PubMed]
  16. T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745 (2004). [CrossRef]
  17. T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Sel. Top. Quantum Electron. 10, 1149 (2004). [CrossRef]
  18. I. D. Rukhlenko, M. Premaratne, C. Dissanayake, and G. P. Agrawal, "Nonlinear pulse evolution in silicon waveguides: An approximate analytic approach," J. Lightwave Technol. 28, in press (2009).
  19. I. D. Rukhlenko, M. Premaratne, C. Dissanayake, and G. P. Agrawal, "Continuous-wave Raman amplification in silicon waveguides: beyond the undepleted pump approximation," Opt. Lett. 34, 536 (2009). [CrossRef] [PubMed]
  20. S. Roy, S. K. Bhadra, and G. P. Agrawal, "Raman amplification of optical pulses in silicon waveguides: effects of finite gain bandwidth, pulse width, and chirp," J. Opt. Soc. Am. B 26, 17 (2009). [CrossRef]
  21. B. Jalali, O. Boyraz, V. Raghunathan, D. Dimitropoulos, and P. Koonath, "Silicon Raman amplifiers, lasers and their applications," Proc. SPIE 6014, 21-26 (2005).
  22. C. Fox, An Introduction to the Calculus of Variations (Dover, New York, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited