OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5879–5884

Coupling induced anomalous group velocity dispersion in nonlinear arrays of silicon photonic wires

Christopher J. Benton and Dmitry V. Skryabin  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5879-5884 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (525 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that the group velocity dispersion (GVD) of the supermodes in a small array of silicon photonic wires can differ dramatically from the single wire GVD. This enables soliton propagation and modulational instability to be seen at wavelengths where single wires have strongly normal GVD.

© 2009 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(130.5990) Integrated optics : Semiconductors
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(080.1238) Geometric optics : Array waveguide devices

ToC Category:
Nonlinear Optics

Original Manuscript: February 17, 2009
Revised Manuscript: March 17, 2009
Manuscript Accepted: March 24, 2009
Published: March 26, 2009

Christopher J. Benton and Dmitry V. Skryabin, "Coupling induced anomalous group velocity dispersion in nonlinear arrays of silicon photonic wires," Opt. Express 17, 5879-5884 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008). [CrossRef] [PubMed]
  2. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15, 16604-16644 (2007). [CrossRef] [PubMed]
  3. M. Hochberg, T. Baehr-Jones, G. Wang, and M. Shearn, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Maters. 5, 703-709 (2006). [CrossRef]
  4. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006). [CrossRef] [PubMed]
  5. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  6. Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," Nat. Photonics 2, 242-246 (2008). [CrossRef]
  7. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal. "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 021111 (2007). [CrossRef]
  8. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006). [CrossRef] [PubMed]
  9. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006). [CrossRef] [PubMed]
  10. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006). [CrossRef] [PubMed]
  11. W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De-La-Rue, "Solitons and spectral broadening in long silicon-on- insulator photonic wires," Opt. Express 16, 3310-3319 (2008). [CrossRef] [PubMed]
  12. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007). [CrossRef] [PubMed]
  13. J. I. Dadap, N. C. Panoiu, X. Chen, I. W. Hsieh, X. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood Jr., "Nonlinear-optical phase modification in dispersionengineered si photonic wires," Opt. Express 16, 1280-1299 (2008). [CrossRef] [PubMed]
  14. T. Pertsch, T. Zentgraf, U. Peschel1, A. Bruer, and F. Lederer, "Anomalous refraction and diffraction in discrete optical systems," Phys. Rev. Lett. 88, 093901 (2002). [CrossRef] [PubMed]
  15. F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, "Discrete solitons in optics," Phys. Rep. 463, 1-126 (2008). [CrossRef]
  16. A. V. Yulin, D. V. Skryabin, and A. G. Vladimirov, "Modulational instability of discrete solitons in coupled waveguides with group velocity dispersion," Opt. Express 14, 12347-12352 (2006). [CrossRef] [PubMed]
  17. P. D. Rasmussen, A. A. Sukhorukov, D. N. Neshev, W. Krolikowski, O. Bang, J. Lagsgaard, and Y. S. Kivshar, "Spatiotemporal control of light by bloch-mode dispersion in multi-core fibers," Opt. Express 16, 5878-5891 (2008). [CrossRef] [PubMed]
  18. C. J. Benton, A. V. Gorbach, and D. V. Skryabin, "Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires," Phys. Rev. A 78, 033818 (2008). [CrossRef]
  19. K. S. Chiang, Y. T. Chow, D. J. Richardson, D. Taverner, L. Dong, L. Reekie, and K. M. Lo, "Experimental demonstration of intermodal dispersion in a two-core optical fibre," Opt. Commun. 143, 189-192 (1997). [CrossRef]
  20. M. Yu, C. J. Mckinstrie, and G. P. Agrawal, "Modulational instabilities in dispersion-flattened fibers," Phys. Rev. E 52, 1072-1080 (1995). [CrossRef]
  21. F. Biancalana, D. V. Skryabin, and P. S. Russell, "Four-wave mixing instabilities in photonic-crystal and tapered fibers," Phys. Rev. E 68, 046603 (2003). [CrossRef]
  22. N. Akhmediev and A. Ankiewicz, "Novel soliton states and bifurcation phenomena in nonlinear fiber couplers," Phys. Rev. Lett. 70, 2395-2398 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited