OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 5925–5932

Excitation of plasmonic gap waveguides by nanoantennas

Jing Wen, Sergei Romanov, and Ulf Peschel  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 5925-5932 (2009)
http://dx.doi.org/10.1364/OE.17.005925


View Full Text Article

Enhanced HTML    Acrobat PDF (354 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We model and optimize the excitation of a plasmonic gap waveguide by a dipole antenna. The coupling efficiency strongly depends on antenna and waveguide properties where impedanec matching plays a critical role. The optimization of antenna lengths and gap widths shows that concepts of circuit networks can likewise be applied to optical frequencies. Using classical optimization schemes known from electrical engineering we manage to increase the coupling efficiency by a factor of 129 compared with the situation without antennas.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 23, 2008
Revised Manuscript: February 16, 2009
Manuscript Accepted: March 23, 2009
Published: March 30, 2009

Citation
Jing Wen, Sergei Romanov, and Ulf Peschel, "Excitation of plasmonic gap waveguides by nanoantennas," Opt. Express 17, 5925-5932 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-5925


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  2. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  3. R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005). [CrossRef]
  4. W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108 (2005). [CrossRef]
  5. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999). [CrossRef]
  6. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction- limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002). [CrossRef]
  7. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005). [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  9. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmonpolaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006). [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  11. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, "Compact gradual bends for channel plasmon polaritons," Opt. Express 14, 4494-4503 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4494. [CrossRef] [PubMed]
  12. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005). [CrossRef]
  13. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005). [CrossRef]
  14. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-17-6645. [CrossRef] [PubMed]
  15. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005). [CrossRef]
  16. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  17. D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006). [CrossRef]
  18. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, "Excitation of surface polaritons by end-fire coupling," Opt. Lett. 8, 386-388 (1983). [CrossRef] [PubMed]
  19. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005). [CrossRef]
  20. S. A. Maier, Plasmonics:Fundamentals and Applications (Springer, New York, 2007).
  21. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  22. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15, 13682-13688 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13682. [CrossRef] [PubMed]
  23. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003). [CrossRef]
  24. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13272. [CrossRef] [PubMed]
  25. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003). [CrossRef]
  26. E. J. Smythe, E. Cubukcu, and F. Capasso, "Optical properties of surface plasmon resonances of coupled metallic nanorods," Opt. Express 15, 7439-7447 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7439. [CrossRef] [PubMed]
  27. A. Alù and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature photonics 2, 307-310 (2008). [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  29. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by small particles (Wiley Interscience, New York, 1983).
  30. N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: Nanoinductors, Nanocapacitors, Nanoresistors," Phys. Rev. Lett. 95, 095504 (2005). [CrossRef] [PubMed]
  31. N. Engheta, "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007). [CrossRef] [PubMed]
  32. A. Alù and N. Engheta, "Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes," J. Opt. Soc. Am. B 23, 571-583 (2006). [CrossRef]
  33. A. Alù and N. Engheta, "Input Impedance, Nanocircuit Loading, and Radiation Tuning of Optical Nanoantennas," Phys. Rev. Lett. 101, 043901 (2008). [CrossRef] [PubMed]
  34. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley Interscience, Hoboken, NJ, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited