OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 5933–5943

Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture

Kamil Boratay Alici, Filiberto Bilotti, Lucio Vegni, and Ekmel Ozbay  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 5933-5943 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the present work, we studied particle candidates for metamaterial applications, especially in terms of their electrical size and resonance strength. The analyzed particles can be easily produced via planar fabrication techniques. The electrical size of multi-split ring resonators, spiral resonators, and multi-spiral resonators are reported as a function of the particle side length and substrate permittivity. The study is continued by demonstrating the scalability of the particles to higher frequencies and the proposition of the optimized particle for antenna, absorber, and superlens applications: a multi-spiral resonator with λ/30 electrical size operating at 0.810 GHz. We explain a method for tuning the resonance frequency of the multi-split structures. Finally, we demonstrate that by inserting deep subwavelength resonators into periodically arranged subwavelength apertures, complete transmission enhancement can be obtained at the magnetic resonance frequency.

© 2009 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: January 5, 2009
Revised Manuscript: February 27, 2009
Manuscript Accepted: March 27, 2009
Published: March 30, 2009

Kamil B. Alici, Filiberto Bilotti, Lucio Vegni, and Ekmel Ozbay, "Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture," Opt. Express 17, 5933-5943 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  4. K. B. Alici and E. Ozbay, "Characterization and tilted response of a fishnet metamaterial operating at 100 GHz," J. Phys. D: Appl. Phys. 41, 135011.
  5. M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006). [CrossRef]
  6. B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, "Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography," Appl. Phys. Lett. 90, 254106 (2007). [CrossRef]
  7. S. Zhang, W. Fan, K. J. Malloy, S. R. J. BrueckN. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005). [CrossRef] [PubMed]
  8. K. Buell, H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech. 54, 135-146 (2006). [CrossRef]
  9. Alu, F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength compact resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag. 55, 13-25 (2007). [CrossRef]
  10. K. B. Alici and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys. 101, 083104 (2007). [CrossRef]
  11. K. B. Alici and E. Ozbay, "Radiation properties of a split ring resonator and monopole composite, " Physica Solidi Status B 244, 1192-1196 (2007). [CrossRef]
  12. Erentok and R. Ziolkowski, "A hybrid optimization method to analyze metamaterial-based electrically small antennas," IEEE Trans. Antennas Propag. 55, 731-741 (2007). [CrossRef]
  13. Alu, F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag. 54, 1632-1643 (2006). [CrossRef]
  14. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999). [CrossRef]
  15. Ourir, A. Lustrac, and J. M. Lourtioz, "All-metamaterial-based subwavelength cavities (?/60) for ultrathin directive antennas," Appl. Phys. Lett. 88, 084103 (2006). [CrossRef]
  16. J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005). [CrossRef]
  17. J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microwave Theory Tech. 18, 265-271 (2006). [CrossRef]
  18. F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004). [CrossRef]
  19. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental Verification and simulation of negative index of refration using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  20. S. He, Y. Jin, Z. Ruan, and J. Kuang, "On subwavelength and open resonators involving matematerials of negative refraction index," New J. Phys. 7, 210 (2005). [CrossRef]
  21. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 (2006). [CrossRef] [PubMed]
  22. Alu and N. Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15, 3318-3332 (2007). [CrossRef] [PubMed]
  23. S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, "Cloaking and imaging effects in plasmonic checkerboards of negative ? and µ and dielectric photonic crystal checkerboards," Photonics Nanostruct. 5, 63-72 (2007). [CrossRef]
  24. L. Zhang, G. Tuttle, and C. M. Soukoulis, "GHz magnetic response of split ring resonators," Photonics Nanostruct. 2, 155-159 (2004). [CrossRef]
  25. O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006). [CrossRef]
  26. K. Aydin and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007). [CrossRef]
  27. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004). [CrossRef]
  28. M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001). [CrossRef] [PubMed]
  29. M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, "Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment," Electron. Lett. 39, 215-217 (2003). [CrossRef]
  30. J.D. Baena, R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004). [CrossRef]
  31. R. R. A. Syms, I. R. Young, and L. Solymar, "Low loss magneto-inductive waves," J. Phys. D 39, 3945-3951 (2006). [CrossRef]
  32. K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, "Miniaturized negative permeability materials," Appl. Phys. Lett. 91, 071121 (2007). [CrossRef]
  33. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech. 55, 2865-2873 (2007). [CrossRef]
  34. F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, "Metamaterial transmission lines based on broad-side coupled spiral resonators," Electron. Lett. 43, 530-532 (2007). [CrossRef]
  35. Bahl and P. Bhartia, Microwave Solid State Circuit Design, 2nd ed. (Wiley, New York, 2003), 57-63.
  36. Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of lefthanded materials," Phys. Rev. Lett. 93, 107402 (2004). [CrossRef] [PubMed]
  37. K. B. Alici and E. Ozbay, "Complete characterization and far field radiation pattern of a negative index metamaterial slab operating at the milli-meter wave regime," submitted.
  38. User Manual, Version 5.0, CST GmbH, Darmstadt, Germany, 2005, http://www.cst.de.
  39. F. Bilotti, A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag. 55, 2258-2267 (2007). [CrossRef]
  40. J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using Photoconducting switches," IEEE Trans. Antennas Propag. 54, 449-454 (2006). [CrossRef]
  41. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  42. G. T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  43. N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited