OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 5953–5964

Circular Grating Resonators as Small Mode-Volume Microcavities for Switching

Sophie Schönenberger, Nikolaj Moll, Thilo Stöferle, Rainer F. Mahrt, Bert J. Offrein, Stephan Götzinger, Vahid Sandoghdar, Jens Bolten, Thorsten Wahlbrink, Tobias Plötzing, Michael Waldow, and Michael Först  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 5953-5964 (2009)
http://dx.doi.org/10.1364/OE.17.005953


View Full Text Article

Enhanced HTML    Acrobat PDF (3982 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the suitability of microcavities based on circular grating resonators (CGRs) as fast switches. This type of optical resonator is characterized by a high quality factor and very small mode volume. The waveguide-coupled CGRs are fabricated with silicon-on-insulator technology compatible with standard complementary metal-oxide semiconductor (CMOS) processing. The linear optical properties of the CGRs are investigated by transmission spectroscopy. From 3D finite-difference time-domain simulations of isolated CGRs, we identify the measured resonances. We probe the spatial distribution and the parasitic losses of a resonant optical mode with scanning near-field optical microscopy. We observe fast all-optical switching within a few picoseconds by optically generating free charge carriers within the cavity.

© 2009 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.1150) Optical devices : All-optical devices
(230.5750) Optical devices : Resonators
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: January 23, 2009
Revised Manuscript: March 18, 2009
Manuscript Accepted: March 18, 2009
Published: March 30, 2009

Citation
Sophie Schönenberger, Nikolaj Moll, Thilo Stöferle, Rainer F. Mahrt, Bert J. Offrein, Stephan Götzinger, Vahid Sandoghdar, Jens Bolten, Thorsten Wahlbrink, Tobias Plötzing, Michael Waldow, and Michael Först, "Circular Grating Resonators as Small Mode-Volume Microcavities for Switching," Opt. Express 17, 5953-5964 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-5953


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [PubMed]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [PubMed]
  3. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, "Polymer microdisk and microring lasers," Opt. Lett. 20, 2093 (1995). [PubMed]
  4. J. Niehusmann, A. V¨orckel, P. Haring Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-24-2861.
  5. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65 (2007).
  6. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring Resonator Channel Dropping Filters," IEEE J. Lightwave Technol. 15, 998 (1997).
  7. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003). [PubMed]
  8. T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback semiconductor laser: An analysis," J. Appl. Phys. 68, 1435 (1990).
  9. M. Toda, "Single-Mode Behavior of a Circular Grating for Potential Disk-Shaped DFB Lasers," IEEE J. Quantum. Electron. 26, 473 (1990).
  10. J. Scheuer and A. Yariv, "Optical annular resonators based on radial Bragg and photonic crystal reflectors," Opt. Express 11, 2736-2746 (2003). [PubMed]
  11. C. Bauer, H. Giessen, B. Schnabel, E.-B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, "A Surface-Emitting Circular Grating Polymer Laser," Advanced Materials 13, 1161-1164 (2001).
  12. A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G.-L. Bona, and W. B¨achtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96, 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1.
  13. J. Scheuer,W.M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP Annular Bragg Lasers: Theory, Applications, and Modal Properties," IEEE J. Sel. Topics in Quantum Electron. 11, 476 (2005).
  14. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 101 (2005).
  15. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004). [PubMed]
  16. C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003), http://link.aip.org/link/?APPLAB/83/1527/1.
  17. A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).
  18. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vu?kovi?, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073,102 (2007).
  19. E.-X. Ping, "Transmission of electromagnetic waves in planar, cylindrical, and spherical dielectric layer systems and their applications," J. Appl. Phys. 76, 7188-7194 (1994), http://link.aip.org/link/?JAP/76/7188/1.
  20. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173. [PubMed]
  21. R. Harbers, N. Moll, D. Erni, G.-L. Bona, andW. Bchtold, "Efficient coupling into and out of high-Q resonators," J. Opt. Soc. Am. A 21, 1512 (2004).
  22. T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, and P. Haring Bolivar, "Highly selective etch process for silicon-on-insulator nanodevices," Microelectron. Eng. 78-79, 212-217 (2005).
  23. S. G¨otzinger, S. Demmerer, O. Benson, and V. Sandoghdar, "Mapping and manipulating whispering-gallery modes of a microsphere resonator with a near-field probe," Journal of Microscopy 202, 117-121 (2001). [PubMed]
  24. R. W¨uest, D. Erni, P. Strasser, F. Robin, H. J¨ackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, "A "standing-wave meter" to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 110 (2005).
  25. E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).
  26. V. Sandoghdar, B. C. Buchler, P. Kramper, S. G¨otzinger, O. Benson, and M. Kafesaki, Photonic Crystals - Advances in Design, Fabrication and Characterisation, chap. 11, pp. 215-237 (Wiley-VCH, Weinheim, 2004).
  27. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express 15, 430 (2007). [PubMed]
  28. M. Först, J. Niehusmann, T. Pl¨otzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed alloptical switching in ion-implanted silion-on-insulator microring resonators," Opt. Lett. 32, 2046-2048 (2007). [PubMed]
  29. M. Waldow, T. Pl¨otzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, "25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator," Opt. Express 16, 7693-7702 (2008). [PubMed]
  30. R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum. Electron. 23, 123-129 (1987).
  31. Y. Liu and H. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006). [PubMed]
  32. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031,115 (2007).
  33. N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, "Integrated all-optical switch in a cross-waveguide geometry," Appl. Phys. Lett. 88, 171,104 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited