OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 5980–5986

Frequency doubling of a broadband Raman fiber laser to 655 nm

S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 5980-5986 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (219 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



655 nm laser radiation with power of >60 mW is generated by frequency doubling of a broadband randomly-polarized 1.31-μm Raman fiber laser (RFL). The red power appears to grow linearly with increasing RFL power up to 7 W at efficiency comparable with that for single-frequency lasers. It has been shown that multiple sum-frequency mixing processes involving different RFL modes provide the main contribution to the output, which is enhanced by 2 times due to the modes stochasticity.

© 2009 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 4, 2009
Revised Manuscript: March 19, 2009
Manuscript Accepted: March 19, 2009
Published: March 30, 2009

S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko, "Frequency doubling of a broadband Raman fiber laser to 655 nm," Opt. Express 17, 5980-5986 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V. Grekov, S. A. Vasiliev, and O. I. Medvedkov, "Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber", Opt. Lett. 25, 402-404 (2000). [CrossRef]
  2. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, "2.1 µm continuous-wave Raman laser in GeO2 fiber", Opt. Lett. 32, 1848-1850 (2007). [CrossRef] [PubMed]
  3. Y.-G. Han, C.-S. Kim, J. U. Kang, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings", IEEE Photon. Technol. Lett. 15, 383-385 (2003). [CrossRef]
  4. P. C. Reeves-Hall and J. R. Taylor, "Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm", Electron. Lett. 37, 491-492 (2001). [CrossRef]
  5. S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, "All-fiber widely tunable Raman fiber laser with controlled output spectrum", Opt. Express 15, 8438-8443 (2007). [CrossRef] [PubMed]
  6. N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation", Opt. Commun. 176,219-222 (2000). [CrossRef]
  7. M. Higashihata, K. Tochigi, Y. Nakata, and T. Okada "Application to the optical coherent tomography of fiber Raman laser", 5th CLEO/Pacific Rim 2003 (15-19 Dec. 2003), 1, 183 (2003).
  8. W. Hackenberg, D. Bonaccini, and D. Werner, "Fiber Raman laser development for multiple sodium laser guide star adaptive optics", Proc. SPIE 4839, 421-428 (2003). [CrossRef]
  9. Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, "Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser," Opt. Express 12,1843-1847 (2004). [CrossRef] [PubMed]
  10. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm", Opt. Express 13, 6772-6776 (2005). [CrossRef] [PubMed]
  11. Y. Feng, L. Taylor, and D. Bonaccini Calia, "20W CW, 4 MHz linewidth Raman fiber amplifier with SHG to 589 nm", Photonics West 2009, San Jose (postdeadline paper 7195-101).
  12. V. I. Karpov, W. R. L. Clements, E. M. Dianov, and S. B. Parenyi "High-power 1.24 ?m phosphosilicate-fiber-based laser pumped by laser diodes", Can. J. Phys. 78, 407-413 (2000). [CrossRef]
  13. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Spectral broadening in Raman fiber lasers", Opt. Lett. 31, 3007-3009 (2006). [CrossRef] [PubMed]
  14. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser", J. Opt. Soc. Am. B 24, 1729-1738 (2007). [CrossRef]
  15. J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, "Numerical modeling of intracavity spectral broadening of Raman fiber lasers", IEEE Photon. Technol. Lett. 19, 1759-1761 (2007). [CrossRef]
  16. V. G. Dmitriev, L. V. Tarasov, Applied nonlinear optics (M., Radio i svyaz’, 1982) [in Russian].
  17. V. G. Dmitriev and Yu.V. Yur’ev, "Equations for second-harmonic generation under quasi-phase-matched interaction conditions in nonlinear crystals with a regular domain structure," Quantum Electron. 28, 1007-1010 (1998). [CrossRef]
  18. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams", J. Appl. Phys. 39, 3597 (1968). [CrossRef]
  19. S. D. Smith, H. D. Riccius, and R. P. Edwin, "Refractive indices of lithium niobate," Opt. Commun. 17, 332(1976) and  20, 188 (1977) (errata). [CrossRef]
  20. F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, "Frequency-doubling of a CW fiber laser using PPKTP, PMgSLT, and PPMgLN," Opt. Express 15, 12882-12889 (2007). [CrossRef] [PubMed]
  21. J. Ducuing and N. Bloembergen, "Static fluctuations in nonlinear optical processes," Phys. Rev. 133, A1493-1502 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited