OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 5998–6003

Silicon-waveguide-coupled high-Q chalcogenide microspheres

Daniel H. Broaddus, Mark A. Foster, Imad H. Agha, Jacob T. Robinson, Michal Lipson, and Alexander L. Gaeta  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 5998-6003 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1419 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We fabricate high-Q arsenic triselenide glass microspheres through a three-step resistive heating process. We demonstrate quality factors greater than 2×106 at 1550 nm and achieve efficient coupling via a novel scheme utilizing index-engineered unclad silicon nanowires. We find that at powers above 1 mW the microspheres exhibit high thermal instability, which limits their application for resonator-enhanced nonlinear optical processes.

© 2009 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.5750) Optical devices : Resonators

ToC Category:
Optical Design and Fabrication

Original Manuscript: February 11, 2009
Revised Manuscript: March 23, 2009
Manuscript Accepted: March 25, 2009
Published: March 30, 2009

Daniel H. Broaddus, Mark A. Foster, Imad H. Agha, Jacob T. Robinson, Michal Lipson, and Alexander L. Gaeta, "Silicon-waveguide-coupled high-Q chalcogenide microspheres," Opt. Express 17, 5998-6003 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  2. I. H. Agha, J. E. Sharping, M. A. Foster, and A. L. Gaeta, "Optimal sizes of silica microspheres for linear and nonlinear optical interactions," Appl. Phys. B 83, 303-309 (2006). [CrossRef]
  3. M. Gorodetsky and V. Ilchenko, "Optical microsphere resonators: Optimal coupling to high-Q whispering-gallery modes," J. Opt. Soc. Am. B 16, 147-154 (1999). [CrossRef]
  4. D. Vernooy, V. Ilchenko, H. Mabuchi, E. Streed, and H. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998). [CrossRef]
  5. B. Little, J. Laine, and H. Haus, "Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators," J. Lightwave Technol. 17, 704-715 (1999). [CrossRef]
  6. M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000). [CrossRef] [PubMed]
  7. T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, "Ultralow-threshold microcavity raman laser on a microelectronic chip," Opt. Lett. 29, 1224-1226 (2004). [CrossRef] [PubMed]
  8. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity," Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]
  9. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralow-threshold raman laser using a spherical dielectric microcavity," Nature 415, 621-623 (2002). [CrossRef] [PubMed]
  10. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres," Phys. Rev. A 76, 043837-4 (2007). [CrossRef]
  11. P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature 450, 1214-1217 (2007). [CrossRef]
  12. A. Hilton, "Optical properties of chalcogenide glass," J. Non-Cryst. Solids 2, 28-39 (1970). [CrossRef]
  13. J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harrison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, "Development and infrared applications of chalcogenide glass optical fibers," Fiber Integr. Opt. 19, 251-274 (2000). [CrossRef]
  14. B. J. Eggleton, V. G. Ta'eed, and B. Luther-Davies, "Chalcogenide glass advanced for all-optical processing," Photonics Spectra 41, (2007). http://www.photonics.com/content/spectra/2007/September/features/88885.aspx.
  15. V. Ta'eed, N. Baker, L. Fu, K. Finsterbusch, M. Lamont, D. Moss, H. Nguyen, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007). [CrossRef] [PubMed]
  16. M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, "Efficient and ultrafast all-optical switching using high ?n, small core chalcogenide glass fibre," Electron. Lett. 29, 1966-1968 (1993). [CrossRef]
  17. V. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. Littler, D. Moss, and B. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006). [CrossRef] [PubMed]
  18. L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005). [CrossRef] [PubMed]
  19. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004). [CrossRef]
  20. O. Kulkarni, C. Xia, D. Lee, M. Kumar, A. Kuditcher, M. Islam, F. Terry, M. Freeman, B. Aitken, S. Currie, J. McCarthy, M. Powley, and D. Nolan, "Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient," Opt. Express 14, 7924-7930 (2006). [CrossRef] [PubMed]
  21. E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, "Enhanced kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007). [CrossRef] [PubMed]
  22. L. Fu, A. Fuerbach, I. Littler, and B. Eggleton, "Efficient optical pulse compression using chalcogenide single-mode fibers," Appl. Phys. Lett. 88, (2006). [CrossRef]
  23. A. Husakou and J. Herrmann, "Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses," Appl. Phys. B 77, 227-234 (2003). [CrossRef]
  24. D. Yoem, E. Magi, M. Lamont, M. Roelens, L. Fu, and B. J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Opt. Lett. 33, 660-662 (2008). [CrossRef]
  25. V. Ta'eed, M. Shokooh-Saremi, L. Fu, D. Moss, M. Rochette, I. Littler, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005). [CrossRef] [PubMed]
  26. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, "Supercontinuum generation in an ultrafast laser-inscribed chalcogenide glass waveguide," Opt. Express 15, 15776-15781 (2007). [CrossRef] [PubMed]
  27. G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, "Linear optical characterization of chalcogenide glasses," Opt. Commun. 230, 331-336 (2004). [CrossRef]
  28. G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, "Chalcogenide glass microspheres; their production, characterization and potential," Opt. Express 15, 17542-17553 (2007). [CrossRef] [PubMed]
  29. Y. Ruan, M. Kim, Y. Lee, B. Luther-Davies, and A. Rode, "Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography," Appl. Phys. Lett. 90, 071102-3 (2007). [CrossRef]
  30. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Demonstration of chalcogenide glass racetrack micro-resonators," Opt. Lett. 33, 761-763 (2008). [CrossRef] [PubMed]
  31. C. Grillet, S. Bian, E. Magi, and B. Eggleton, "Fiber taper coupling to chalcogenide microsphere modes," Appl. Phys. Lett. 92, 171109 (2008). [CrossRef]
  32. J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008). [CrossRef] [PubMed]
  33. A. Snyder and J. Love, Optical Waveguide Theory, (Kluwer Academic Publishers, 1983).
  34. V. Almeida, R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003). [CrossRef] [PubMed]
  35. V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  36. H. Naito, H. Amii, M. Okuda, and T. Matsushita, "Structural changes in amorphous arsenic triselenide below the glass-transition temperature," J. Non-Cryst. Solids 164-166, 1239-1242 (1993). [CrossRef]
  37. E. D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 79-87 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited