OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6018–6024

Integration of plasmonic trapping in a microfluidic environment

Lina Huang, Sebastian J. Maerkl, and Olivier J. F. Martin  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6018-6024 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (851 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near field generated by plasmonic structures has recently been proposed to trap small objects. We report the first integration of plasmonic trapping with microfluidics for lab–on–a–chip applications. A three–layer plasmo–microfluidic chip is used to demonstrate the trapping of polystyrene spheres and yeast cells. This technique enables cell immobilization without the complex optics required for conventional optical tweezers. The benefits of such devices are optical simplicity, low power consumption and compactness; they have great potential for implementing novel functionalities for advanced manipulations and analytics in lab–on–a–chip applications.

© 2009 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(240.6680) Optics at surfaces : Surface plasmons
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: March 6, 2009
Revised Manuscript: March 27, 2009
Manuscript Accepted: March 27, 2009
Published: March 30, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Lina Huang, Sebastian J. Maerkl, and Olivier J. Martin, "Integration of plasmonic trapping in a microfluidic environment," Opt. Express 17, 6018-6024 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987). [CrossRef] [PubMed]
  3. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348, 348-352 (1990). [CrossRef] [PubMed]
  4. M. Zahn and S. Seeger, "Optical tweezers in pharmacology," Cell. Mol. Biol. 44, 747-761 (1998). [PubMed]
  5. T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, "Automated singlecell manipulation and sorting by light trapping," Appl. Opt. 26, 5311-5316 (1987). [CrossRef] [PubMed]
  6. C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature 421, 423-427 (1987). [CrossRef]
  7. A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Pretiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61, 023608 (2000). [CrossRef]
  8. F. L. Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004). [CrossRef]
  9. S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008). [CrossRef]
  10. S. Kawata and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser beam," Opt. Lett. 17, 772-774 (1992). [CrossRef] [PubMed]
  11. S. Kawata and T. Tani, "Optically driven Mie particles in an evanescent field along a channeled wave guide," Opt. Lett. 21, 1768-1770 (1996). [CrossRef] [PubMed]
  12. L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J , Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 19, 1439-1444 (2000).
  13. K. Grujic and O. G. Helleso, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express 13, 1-7 (2004). [CrossRef]
  14. M. Kerker and C. G. Blatchford, "Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region," Phys. Rev. B 26, 4052-4063 (1982). [CrossRef]
  15. K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994). [CrossRef] [PubMed]
  16. T. Sugiura and T. Okada, "Gold-bead scanning near-field optical microscope with laser-force position control," Opt. Lett. 22, 1663-1665 (1997). [CrossRef]
  17. H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23, 216-218 (1998). [CrossRef]
  18. P. C. Ke and M. Gu, "Characterization of trapping force on metallic Mie particles," Appl. Opt. 36, 1439-1444 (1999).
  19. R. Quidant, D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Opt. Lett. 30, 1009-1011 (2005). [CrossRef] [PubMed]
  20. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface plasmon radiation forces," Phys. Rev. Lett. 96, 238101 (2006). [CrossRef] [PubMed]
  21. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007). [CrossRef]
  22. X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum Electron. 13, 1655-1662 (2007). [CrossRef]
  23. A. N. Grigorenko, N.W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008). [CrossRef]
  24. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, "Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas," Nano Lett., Articles ASAP, (2009). [CrossRef] [PubMed]
  25. L. Huang and O. J. F. Martin, "Reversal of the optical force in a plasmonic trap," Opt. Lett. 33, 3001-3003 (2008). [CrossRef] [PubMed]
  26. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Local-field enhancement in an optical force metallic nanotrap: application to single-molecule spectroscopy," Appl. Opt. 45, 5185-5790 (2006). [CrossRef] [PubMed]
  27. K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005). [CrossRef]
  28. B. Sepulveda, J. Alegret, and M. Käll, "Nanometric control of the distance between plasmonic nanoparticles using optical forces," Opt. Express 15, 14914-14920 (2007). [CrossRef] [PubMed]
  29. E. Lamothe, G. Lévêque, and O. J. F. Martin, "Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes," Opt. Express 15, 9631-9644 (2007). [CrossRef] [PubMed]
  30. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32, 1156-1158 (2007). [CrossRef] [PubMed]
  31. O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998). [CrossRef]
  32. M. Paulus and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green’s tensor approach," J. Opt. Soc. Am. A 18, 3909-3915 (2001). [CrossRef]
  33. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  34. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000). [CrossRef]
  35. T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580-584 (2002). [CrossRef] [PubMed]
  36. B. Lukic, S. Jeney, C. Tischer, A. J. Kulik, L. Forro, and E.-L. Florin, "Direct observation of nondiffusive motion of a Brownian particle," Phys. Rev. Lett. 95, 160601 (2005). [CrossRef] [PubMed]
  37. B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E.-L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76, 011112 (2007). [CrossRef]
  38. V. R. Daria, P. J. Rodrigo, and J. Glckstad, "Dynamic formation of optically trapped microstructure arrays for biosensor applications," Biosens. Bioelectron. 19, 1439-1444 (2004). [CrossRef] [PubMed]
  39. D. D. Carlo, N. Aghdam, and L. P. Lee, "Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays," Anal. Chem. 78, 4925-4930 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (7961 KB)     
» Media 2: MOV (4449 KB)     
» Media 3: MOV (2928 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited