OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6074–6081

Polarized vertical beaming of an engineered hexapole mode laser

Ju-Hyung Kang, Min-Kyo Seo, Sun-Kyung Kim, Se-Heon Kim, Myung-Ki Kim, Hong-Gyu Park, Ki-Soo Kim, and Yong-Hee Lee  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6074-6081 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1159 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate vertical beaming of linearly-polarized light from the hexapole mode of an engineered single-cell photonic crystal cavity by employing the solid angle scanning system. The vertical emission that is forbidden by the inner symmetry of the hexapole mode is made possible by perturbing its symmetry. Experimentally 56% of photons are funneled within a divergence angle of ±30°. Measured polarization-resolved far-field profiles of the engineered hexapole mode agree well with those of the predictions of finite difference time domain methods.

© 2009 Optical Society of America

OCIS Codes
(140.3945) Lasers and laser optics : Microcavities
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: February 24, 2009
Revised Manuscript: March 28, 2009
Manuscript Accepted: March 28, 2009
Published: March 31, 2009

Ju-Hyung Kang, Min-Kyo Seo, Sun-Kyung Kim, Se-Heon Kim, Myung-Ki Kim, Hong-Gyu Park, Ki-Soo Kim, and Yong-Hee Lee, "Polarized vertical beaming of an engineered hexapole mode laser," Opt. Express 17, 6074-6081 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  2. H. -Y. Ryu, S. -H. Kim, H. -G. Park, J. -K. Hwang, Y. -H. Lee, and J. -S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002). [CrossRef]
  3. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004). [CrossRef]
  4. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003). [CrossRef]
  5. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007). [CrossRef] [PubMed]
  6. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005). [CrossRef] [PubMed]
  7. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. V?ckovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  8. Q1. H. Altug, D. Englund, and J. V?ckovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006). [CrossRef]
  9. M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003). [CrossRef]
  10. S.-H. Kim, J.-H. Choi, S.-K. Lee, S.-H. Kim, S.-M. Yang, Y.-H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008). [CrossRef] [PubMed]
  11. S. Kita, K. Nozaki, and T. Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008). [CrossRef] [PubMed]
  12. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002). [PubMed]
  13. O. Painter and K. Srinivasan, "Polarization properties of dipolelike defect modes in photonic crystal nanocavities," Opt. Lett. 27, 339-341 (2002). [CrossRef]
  14. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, "Nanowire coupling to photonic crystal nanocavities for single photon sources," Opt. Express 15, 1267-1276 (2007). [CrossRef] [PubMed]
  15. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004). [CrossRef] [PubMed]
  16. M. -K. Seo, K. -Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007). [CrossRef]
  17. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002). [CrossRef]
  18. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006). [CrossRef]
  19. J. V?ckovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Optimization of Q factor in microcavities based on freestanding membranes," IEEE J. Quantum Electron. 38, 850-856 (2002). [CrossRef]
  20. S.-H. Kim, M.-K. Seo, J.-Y. Kim, and Y.-H. Lee, "Effects of a bottom substrate on emission properties of a photonic crystal nanolaser," IPRM 07, IEEE 19th International Conference on, 480-483 (2007).
  21. D.-J. Shin, S.-H. Kim, J.-K. Hwang, H.-Y. Ryu, H.-G. Park, D.-S. Song, and Y.-H. Lee, "Far- and near-field investigations on the lasing modes in two dimensional photonic crystal slab lasers," IEEE J. Quantum Electron 38, 857-866 (2002). [CrossRef]
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numeric Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, England, 1992), p.108.
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain method, 2nd ed. (Artech House, Norwood, MA, 2000).
  24. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005). [CrossRef] [PubMed]
  25. D. Englund, I. Fushman, and J. V?ckovi?, "General Recipe for Designing Photonic Crystal Cavities," Opt. Express 12, 5961-5975 (2005). [CrossRef]
  26. J.-K. Yang, M.-K. Seo, I.-K. Hwang, S.-B. Kim, and Y.-H. Lee, "Polarization-selective resonant photonic crystal photodetector," Appl. Phys. Lett. 93, 211103 (2008). [CrossRef]
  27. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited