OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6082–6095

Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers

Nemanja Jovanovic, Jens Thomas, Robert J. Williams, M. J. Steel, Graham D. Marshall, Alexander Fuerbach, Stefan Nolte, Andreas Tünnermann, and Michael J. Withford  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6082-6095 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fiber Bragg gratings inscribed with a femtosecond laser using the point-by-point (PbP) technique have polarization dependent grating strength (PDGS) and exhibit birefringence. In this paper we quantify the dependence of these two properties on the ellipticity, position in the core and size of the micro-voids at the center of each refractive index modulation. We demonstrate that the effective modal index for type II gratings written with a femtosecond laser using the PbP method must be lower than that of the pristine fiber, and for the first time associate an axis with a polarization such that the long axis of the elliptically-shaped index modulations corresponds to the slow axis of the gratings. We exploit the PDGS of two gratings used as frequency-selective feedback elements as well as appropriate coiling, to realize a linearly-polarized fiber laser with a low birefringence fiber cavity. We show that the polarization-dependent grating strength is a function of the writing pulse energy and that only gratings optimized for this property will linearly polarize the fiber laser. The fiber lasers have high extinction ratios (>30 dB) for fiber lengths of up to 10 m and very stable polarized output powers (<0.5% amplitude fluctuations) in the range of 20–65 mW at 1540 nm. This method of polarization discrimination allows the realization of highly robust and simplified linearly polarized fiber lasers.

© 2009 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(320.2250) Ultrafast optics : Femtosecond phenomena
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 17, 2009
Revised Manuscript: March 18, 2009
Manuscript Accepted: March 19, 2009
Published: March 31, 2009

Nemanja Jovanovic, Jens Thomas, Robert J. Williams, M. J. Steel, Graham D. Marshall, Alexander Fuerbach, Stefan Nolte, Andreas Tünnermann, and Michael J. Withford, "Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers," Opt. Express 17, 6082-6095 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Lai, A. Martinez, I. Khrushchev and I. Bennion, "Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription," Opt. Lett. 31, 1672-1674 (2006). [CrossRef] [PubMed]
  2. E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, "Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating," Opt. Lett. 31, 2390-2392 (2006). [CrossRef] [PubMed]
  3. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, "Stable high-power continuous-wave Yb3+ - doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating," Opt. Lett. 32, 1486-1488 (2007). [CrossRef] [PubMed]
  4. C. W. Smelser, S. J. Mihailov and D. Grobnic, "Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005). [CrossRef] [PubMed]
  5. A. Martinez, I. Y. Khrushchev, and I. Bennion, "Thermal properties of fiber Bragg gratings inscribed point-by-point by infrared femtosecond laser," Electron. Lett. 41, 176-177 (2005). [CrossRef]
  6. N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, "Narrow linewidth, 100W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core," Opt. Lett. 32, 2804-2806 (2007). [CrossRef] [PubMed]
  7. N. Jovanovic, G. D. Marshall, A. Fuerbach, G. E. Town, S. Bennetts, D. G. Lancaster and M. J. Withford, "Highly-narrow linewidth, CW, all-fiber oscillator with a switchable linear polarization," Photon. Technol. Lett. 20, 809-901 (2008). [CrossRef]
  8. P. Lu, D. Grobnic and S. J. Mihailov, "Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser," IEEE J. Lightwave Technology 25, 779-786 (2007). [CrossRef]
  9. Y. Lai, K. Zhou, K Sugden, and I. Bennion, "Point-by-point inscription of first order fiber Bragg grating for C band applications," Opt. Express 15, 18318-18325 (2007). [CrossRef] [PubMed]
  10. E. Wikszak, J. Thomas, S. Klingebiel, B. Ortaç, J. Limpert, S. Nolte, and A. Tünnermann, "Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings," Opt. Lett. 32, 2756-2758 (2007). [CrossRef] [PubMed]
  11. A. Martinez, M. Dubov, I.Y. Khrushchev, and I. Bennion, "Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation," Photon. Technol. Lett. 18, 2266-2268 (2006). [CrossRef]
  12. C. B. Schaffer, A. O. Jamison and E. Mazur, "Morphology of femtosecond laser-induced structural changes in bulk transparent materials," Appl. Phys. Lett. 84, 1441-1443 (2004). [CrossRef]
  13. Comsol, Perpendicular Hybrid Mode Waves Package, www.comsol.com
  14. RSoft, BandSOLVE, www.rsoftdesign.com
  15. I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica," J. Opt. Soc. Am. 55, 1205-1209 (1965). [CrossRef]
  16. SMF 28e specification sheet, http://www.corning.com/WorkArea/showcontent.aspx?id=15535
  17. I. K. Hwang, Y. H. Lee, K. Oh and D.N. Payne, "High birefringence in elliptical hollow optical fiber," Opt. Express 20, 1916 (2004). [CrossRef]
  18. R. B. Dyott, Elliptical fiber waveguides, (Artech House, London, 1995).
  19. M. J. Steel and R. M. Osgood, Jr, "Elliptical hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001). [CrossRef]
  20. T. Erdogan, "Fiber grating spectra," IEEE J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  21. S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, B. Luther-Davies, "Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids," Appl. Phys. Lett. 88, 201909 (2006) [CrossRef]
  22. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli and C. Smith, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999). [CrossRef]
  23. F. Dürr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodski, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited