OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6101–6117

Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures

Rui Yang, Yongjun Xie, Xiaodong Yang, Rui Wang, and Botao Chen  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6101-6117 (2009)
http://dx.doi.org/10.1364/OE.17.006101


View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A rigorous full wave analysis of bianisotropic split ring resonator (SRR) metamaterials is presented for different electromagnetic field polarization and propagation directions. An alternative physical explanation is gained by revealing the fact that imaginary wave number leads to the SRR resonance. Metamaterial based parallel plate waveguide and rectangular waveguide are then examined to explore the resonance response to transverse magnetic and transverse electric waves. It is shown that different dispersion properties, such as non-cutoff frequency mode propagation and enhanced bandwidth of single mode operation, become into existence under certain circumstances. In addition, salient dispersion properties are imparted to non-radiative dielectric waveguides and H waveguides by uniaxial bianisotropic SRR metamaterials. Both longitudinal-section magnetic and longitudinal-section electric modes are capable of propagating very slowly due to metamaterial bianisotropic effects. Particularly, the abnormal falling behavior of some higher-order modes, eventually leading to the leakage, may appear when metamaterials are double negative. Fortunately, for other modes, leakage can be reduced due to the magnetoelectric coupling. When the metamaterials are of single negative parameters, leakage elimination can be achieved.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: January 29, 2009
Revised Manuscript: March 5, 2009
Manuscript Accepted: March 5, 2009
Published: March 31, 2009

Citation
Rui Yang, Yongjun Xie, Xiaodong Yang, Rui Wang, and Botao Chen, "Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures," Opt. Express 17, 6101-6117 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6101


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and μ," Soviet Phys. Uspekhi. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenonmena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability an permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  6. R. W. Ziolkowski, "Design, fabrication and testing of double negative metamaterials," IEEE Trans. Antennas Propag. 51, 1516-1529 (2003). [CrossRef]
  7. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and lefthanded metamaterials," Phys. Rev. B 65, 144440 (2002). [CrossRef]
  8. D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig "Calculation and measurement of bianisotropy in a split ring resonator," J. Appl. Phys. 100, 024507 (2006). [CrossRef]
  9. V. V. Varadan, A. R. Tellakula, "Effective properties of split ring resonator metamaterials using measured scattering parameters: Effect of gap orientation," J. Appl. Phys. 100, 034910 (2006). [CrossRef]
  10. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2493-2495 (2004). [CrossRef]
  11. P. Gay-Balmaz and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split ring resonators," J. Appl. Phys. 92, 2929-2936 (2002). [CrossRef]
  12. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402(1-4), 2004. [CrossRef] [PubMed]
  13. T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, S. Schultz, "Ab initio numerical simulation of left handed metamaterials: comparison of calculation and experiments," J. Appl. Phys. 90, 5419-5424 (2001). [CrossRef]
  14. P. Markos and C. M. Soukoulis, "Numerical studies of left handed materials and arrays of split ring resonators," Phys. Rev. E 65, 036622 (2002). [CrossRef]
  15. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonance for different split ring resonator parameters and designs," New J. Phys. 7, 168 (2005). [CrossRef]
  16. R. Marqués, F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside- couple split ring resonators for metamaterials design-theory and experiments," IEEE Trans. Microwave Theory Tech. 51, 2572-2581 (2003).
  17. A. Alú and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), doublenegative (DNG), and/or double-positive (DPS) layers," IEEE Trans. Microw. Theory Tech. 52, 199-210 (2004). [CrossRef]
  18. B.-I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability," J. Appl. Phys. 93, 9386-9388 (2003). [CrossRef]
  19. Y. S. Xu, "A study of waveguides field with anisotropic metamaterials," Microwave Opt. Technol. Lett. 41, 426-431 (2004). [CrossRef]
  20. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, "Guided modes in negative refractive index waveguides," Phys. Rev. E 67, 057602 (2003). [CrossRef]
  21. S. Hrabar, J. Bartolic, and Z. Sipus, "Miniaturization of rectangular waveguide using uniaxial negative permeability metamaterial," IEEE Trans. Antennas Propag. 53, 110-119 (2005). [CrossRef]
  22. A. L. Topa, C. R. Paiva, and A. M. Barbosa, "Novel propagation features of double negative H-guides and H-guide couplers," Microwave Opt. Technol. Lett. 47, 185-190 (2005). [CrossRef]
  23. P. Yang, D. Lee, and K. Wu, "Nonradiative dielectric waveguide embedded in metamaterial with negative permittivity or permeability," Microwave Opt. Technol. Lett. 45, 207-210 (2005). [CrossRef]
  24. P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, and S. Paulotto, "Unimodal surface wave propagation in metamaterial nonradiative dielectric waveguides," Microwave Opt. Technol. Lett. 48, 2557-2560 (2006). [CrossRef]
  25. C. Krowne, "Electromagnetic theorems for complex. anisotropic media," IEEE Trans. Antennas Propag. 32, 1224-1230 (1984). [CrossRef]
  26. S. A. Tretyakov, "Uniaxial omega medium as a physically realizable alternative for the perfectly matched layer (PML)," J. Electromagn. Wave Applic. 12, 821-837 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited