OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6156–6165

Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm

A.R. McMillan, J. Fulconis, M. Halder, C. Xiong, J.G. Rarity, and W.J. Wadsworth  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6156-6165 (2009)
http://dx.doi.org/10.1364/OE.17.006156


View Full Text Article

Enhanced HTML    Acrobat PDF (237 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An all-fibre heralded single photon source operating at 1570 nm has been demonstrated. The device generates correlated photon pairs, widely spaced in frequency, through four-wave mixing in a photonic crystal fibre. Separation of the pair photons and narrowband filtering is all achieved in fibre. The output heralded single photon rate was 9.2 × 104 per second, with a counts-to-accidentals ratio of 10.4 and a heralding fidelity of 52 %. Furthermore, narrowband filtering ensured that the output single photon state was near time-bandwidth limited with a coherence length of 4 ps. Such a source is well suited to quantum information processing applications.

© 2009 Optical Society of America

OCIS Codes
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: January 21, 2009
Revised Manuscript: February 19, 2009
Manuscript Accepted: February 25, 2009
Published: April 1, 2009

Citation
A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, "Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm," Opt. Express 17, 6156-6165 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6156


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Castelletto and R. E. Scholten, "Heralded single photon sources: a route towards quantum communications technology and photon standards," Eur. Phys. J. Appl. Phys. 41, 181-194 (2008). [CrossRef]
  2. A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, "Practical quantum cryptography based on two-photon interferometry," Phys. Rev. Lett. 69, 1293-1295 (1992). [CrossRef] [PubMed]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  4. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000). [CrossRef] [PubMed]
  5. S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, "Realization of a photonic controlled-NOT gate sufficient for quantum computation," Phys. Rev. Lett. 93, 020504 (2004). [CrossRef] [PubMed]
  6. J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100, 133603 (2008). [CrossRef] [PubMed]
  7. C. H. Bennett, G. Brassard, C. Crepéau, R. Jozsa, A. Peres, and W. K. Wooters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
  8. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997). [CrossRef]
  9. K. Mattle, H. Weinfurter, P. G. Kwait, and A. Zeilinger, "Dense coding in experimental quantum communication," Phys. Rev. Lett. 76, 4656-4659 (1996). [CrossRef] [PubMed]
  10. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, "Quantum repeaters: the role of imperfect local operations in quantum communications," Phys. Rev. Lett. 81, 5932-5935 (1998). [CrossRef]
  11. J. L. O’Brien, "Optical quantum computing," Science 318, 1567-1570 (2007). [CrossRef] [PubMed]
  12. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001). [CrossRef] [PubMed]
  13. P. G. Kwait, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4342 (1995). [CrossRef]
  14. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, "Heralded generation of ultrafast single photons in pure quantum states," Phys. Rev. Lett. 100, 133601 (2008). [CrossRef] [PubMed]
  15. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamo?lu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000). [CrossRef] [PubMed]
  16. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001). [CrossRef]
  17. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, "Efficiant conditional preparation of high-fidelity single photon states for fiber-optic quantum networks," Phys. Rev. Lett. 93, 093601 (2004). [CrossRef] [PubMed]
  18. O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, "High-performance guided-wave asynchronous heralded single-photon source," Opt. Lett. 30, 1539-1541 (2005). [CrossRef] [PubMed]
  19. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  20. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). [CrossRef] [PubMed]
  21. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005). [CrossRef] [PubMed]
  22. E. A. Goldschmidt, M.D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, "Spectrally bright and broad fiber-based heralded single-photon source," Phys. Rev. A 78, 013844 (2008). [CrossRef]
  23. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225-2227 (2003). [CrossRef] [PubMed]
  24. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004). [CrossRef] [PubMed]
  25. J. Fulconis, O. Alibart, W. J. Wadsworth, and J. G. Rarity, "Quantum interference with photon pairs using two micro-structured fibres," New J. Phys. 9, 276 (2007). [CrossRef]
  26. A. S. Clark, J. Fulconis, J. G. Rarity, W. J. Wadsworth, and J. L. O’Brien, "An all optical fibre quantum controlled-NOT gate," arXiv:quant-ph/0802.1676 (2008).
  27. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fibre," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  28. M. Halder, A. Beveratos, R. Thew, C. Jorel, H. Zbinden, and N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008). [CrossRef]
  29. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys 6, 163 (2004). [CrossRef]
  30. C. Xiong and W. J. Wadsworth, "Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation," Opt. Express 16, 2438-2445 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited