OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6258–6267

Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser

Fabien Kéfélian, Shane O’Donoghue, Maria Teresa Todaro, John McInerney, and Guillaume Huyet  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6258-6267 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (659 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report experimental investigations on a two-section 16-GHz repetition rate InAs/GaAs quantum dot passively mode-locked laser. Near the threshold current, pseudo-periodic Q-switching with complex dynamics is exhibited. Mode-locking operation regimes characterized by different repetition rates and timing jitter levels are encountered up to twice the threshold current. Evolution of the RF spectrum and optical spectrum with current is compared. The different mode-locked regimes are shown to be associated with different spectral and temporal shapes, ranging from 1.3 to 6 ps. This point is discussed by introducing the existence of two different supermodes. Repetition rate evolution and timing jitter increase is attributed to the coupling between the dominant and the secondary supermodes.

© 2009 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 2, 2008
Revised Manuscript: December 4, 2008
Manuscript Accepted: December 7, 2008
Published: April 2, 2009

Fabien Kéfélian, Shane O’Donoghue, Maria Teresa Todaro, John McInerney, and Guillaume Huyet, "Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser," Opt. Express 17, 6258-6267 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Yamada, H. Ohta, and S. Nogiwa, "Jitter-free optical sampling system using passively modelocked fibre laser," Electron. Lett. 38, 1044-1045 (2002). [CrossRef]
  2. P. Delfyett, D. Hartman, and S. Ahmad, "Optical clock distribution using a mode-locked semiconductor laserdiode system," J. Lightwave Technol. 9, 1646-1649 (1991). [CrossRef]
  3. L. A. Jiang, E. P. Ippen, and H. Yokoyama, "Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission," Journal of optical and fiber communications reports 2, 1-31 (2005). [CrossRef]
  4. P. E. Barnsley, H. J. Wickes, G. E. Wickens, and D. M. Spirit, "All-optical clock recovery from 5 Gb/s RZ data using a self-pulsating 1.56 ?m laser diode," IEEE Photon. Technol. Lett. 3, 942-945 (1991). [CrossRef]
  5. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005). [CrossRef] [PubMed]
  6. A. Major, V. Barzda, P. A. E. Piunno, S. Musikhin, and U. J. Krull, "An extended cavity diode-pumped femtosecond Yb:KGW laser for applications in optical DNA sensor technology based on fluorescence lifetime measurements," Opt. Express 14, 5285-5294 (2006). [CrossRef] [PubMed]
  7. K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004). [CrossRef]
  8. E. P. Ippen, "Principles of passive mode locking," Appl. Phys. B 58, 159-170 (1994). [CrossRef]
  9. P. T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, "Picosecond pulse generation with a cw (GaAl)As laser diode," Appl. Phys. Lett. 33, 241-243 (1978). [CrossRef]
  10. X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 ?m two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001). [CrossRef]
  11. Q1. D. Bimberg, M. Kuntz, and M. Laemmlin, "Quantum dot photonic devices for lightwave communication," Appl. Phys. A 80, 1179-1182 (2005). [CrossRef]
  12. H. A. Haus, "Theory of mode locking with a fast saturable absorber," J. Appl. Phys. 46, 3049-3058 (1975). [CrossRef]
  13. H. A. Haus, "A theory of forced mode locking," IEEE J. Quantum Electron. 11, 323-330 (1975). [CrossRef]
  14. H. A. Haus, "Parameter ranges for CW passive mode locking," IEEE J. Quantum Electron. 12, 169-176 (1976). [CrossRef]
  15. J. Mulet and J. Moerk, "Analysis of timing jitter in external-cavity mode-locked semiconductor lasers," IEEE J. Quantum Electron. 42, 249-256 (2006). [CrossRef]
  16. M. T. Todaro, J.-P. Tourrenc, S. P. Hegarty, C. Kelleher, B. Corbett, G. Huyet, and J. G. McInerney, "Simultaneous achievement of narrow pulse width and low pulse-to-pulse timing jitter in 1.3?m passively mode-locked quantum-dot lasers," Opt. Lett. 31, 3107-3109 (2006). [CrossRef] [PubMed]
  17. E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, "Stability of the modelocking regime in quantum dot laser," in CLEO/Europe-IQEC (2007).
  18. M. J. R. Heck, E. A. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, "Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 ?m," Opt. Express 15, 16,292-16,301 (2007). [CrossRef]
  19. F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, and G. Huyet, "RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 20, 1405-1407 (2008). [CrossRef]
  20. O. McDuff and S. E. Harris, "Nonlinear theory of the internally loss-modulated laser," IEEE J. Quantum Electron. 3, 101-111 (1967). [CrossRef]
  21. H. Haken and M. Pauthier, "Nonlinear theory of multimode action in loss modulated lasers," IEEE J. Quantum Electron. 4, 454-459 (1968). [CrossRef]
  22. J. R. Fontana, "Theory of spontaneous mode locking in lasers using a circuit model," IEEE J. Quantum Electron. 8, 699-703 (1972). [CrossRef]
  23. J. A. Yeung, "Theory of active mode-locking of a semiconductor laser in an external cavity," IEEE J. Quantum Electron. 17, 398-404 (1981). [CrossRef]
  24. K. Y. Lau, "Narrow-Band Modulation of semiconductor lasers at millimeter wave frequencies (>100 GHz) by mode locking," IEEE J. Quantum Electron. 26, 250-261 (1990). [CrossRef]
  25. A. E. Siegman and D. J. Kuizenga, "FM and AM mode-locking of the Homogeneous Laser. I. Theory," IEEE J. Quantum Electron. 6, 2088-2091 (1970).
  26. H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron. 11, 736-746 (1975). [CrossRef]
  27. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-GHz mode locked semiconductor lasers: experiment, modeling and applications," Proc. IEE Optoelectronics 147, 251-278 (2000). [CrossRef]
  28. H. A. Haus and A. Mecozzi, "Noise of mode-locked lasers," IEEE J. Quantum Electron. 29, 983-996 (1993). [CrossRef]
  29. I. Kim and K. Y. Lau, "Frequency and timing stability of mode-locked semiconductor lasers-Passive and active mode locking up to millimeter wave ferquencies," IEEE J. Quantum Electron. 29, 1081-1090 (1993). [CrossRef]
  30. R. Adler, "A study of locking phenomena in oscillators," in Proceedings IRE, vol. 34, pp. 351-356 (1946). [CrossRef]
  31. K. Y. Lau and J. Paslaski, "Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor lasers," IEEE Photon. Technol. Lett. 3, 974-976 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited