OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6347–6356

Sharp edge wavelength filters utilizing multilayer photonic crystals

Yasuo Ohtera, Yoshihiko Inoue, and Takayuki Kawashima  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6347-6356 (2009)
http://dx.doi.org/10.1364/OE.17.006347


View Full Text Article

Enhanced HTML    Acrobat PDF (774 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel configuration of dielectric multilayer wavelength filters for enabling sharp cut-off characteristics is proposed. By applying perturbations to the multilayer structures such as corrugation or lateral film isolation, deep optical stopbands can be created as a result of the coupling between the obliquely and horizontally propagating light waves. Numerical simulation by FDTD revealed that the proposed structure had approximately two to three times larger decay constants than that of unmodulated flat multilayer.

© 2009 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.4170) Optical devices : Multilayers
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Photonic Crystals

History
Original Manuscript: January 21, 2009
Revised Manuscript: March 1, 2009
Manuscript Accepted: March 4, 2009
Published: April 2, 2009

Citation
Yasuo Ohtera, Yoshihiko Inoue, and Takayuki Kawashima, "Sharp edge wavelength filters utilizing multilayer photonic crystals," Opt. Express 17, 6347-6356 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, "Interference and Interferometers," in Principle of Optics (Oxford, New York, 1980).
  2. H. A. Macleod, "5.2 Multilayer dielectric coatings," in Thin-Film Optical Filters (3rd ed.), (Institute of Physics Publishing, London, 2001). [CrossRef]
  3. E. Yablonovitch, "Photonic band-gap structures," J. Opt. Soc. Am. B 10, 283-295 (1993). [CrossRef]
  4. T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).
  5. Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, "Multi-channel photonic crystal wavelength filter array for near-infrared wavelengths," J. Lightwave Technol. 25, 499-503 (2007). [CrossRef]
  6. Y. Ohtera, K. Miura, and T. Kawashima, "Ge/SiO2 photonic crystal multi-channel wavelength filters for short wave infrared wavelengths," Jpn. J. Appl. Phys. 46, 1511-1515 (2007). [CrossRef]
  7. T. Suzuki and P. K. L. Yu, "Tunneling in photonic band structures," J. Opt. Soc. Am. B 12, 804-820 (1995). [CrossRef]
  8. S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006). [CrossRef]
  9. C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635 (1995). [CrossRef]
  10. Y. Ohtera, "Calculating the complex photonic band structure by the Finite-Difference Time-Domain based method," Jpn. J.Appl. Phys. 47, 4827-4834 (2008). [CrossRef]
  11. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966). [CrossRef]
  12. P. Yeh and A. Yariv, "6. Electromagnetic propagation in periodic media," in Optical Waves in Crystals (John Wiley and Sons, NY, 1984).
  13. Y. Ohtera and T. Kawashima, "Extremely low optical transmittance in the stopbands of photonic crystals," Photonics and Nanostructures - Fundamentals and Applications (2009),?doi:10.1016/j.photonics.2008.12.003 (to be published).
  14. H. Ohkubo, Y. Ohtera, and S. Kawakami, "Transmission wavelength shift of +36nm observed with Ta2O5/SiO2 multi-channel wavelength filters consisting of three-dimensional photonic crystals," IEEE Photon. Technol. Lett. 16, 1322-1324 (2004). [CrossRef]
  15. S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3D Photonic Crystal Heterostructures: Fabrication and In-Line Resonator," IEEE Photon. Technol. Lett. 15, 816-818 (2003). [CrossRef]
  16. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996). [CrossRef]
  17. S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  18. J. G. Fleming and S. -Y. Lin, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 ?m," Opt. Lett. 24, 49-51 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited