OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6407–6413

Study of plasmon resonance in a gold nanorod with an LC circuit model

Cheng-ping Huang, Xiao-gang Yin, Huang Huang, and Yong-yuan Zhu  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6407-6413 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gold nanorod has generated great research interest due to its tunable longitudinal plasmon resonance. However, little progress has been made in the understanding of the effect. A major reason is that, except for the metallic spheres and ellipsoids, the interaction between light and nanoparticles is generally insoluble. In this paper, a new scheme has been proposed to study the plasmon resonance of gold nanorod, in which the nanorod is modeled as an LC circuit with an inductance and a capacitance. The obtained resonance wavelength is dependent on not only aspect ratio but also rod radius, suggesting the importance of self-inductance and the breakdown of linear scaling. Moreover, the cross sections for light scattering and absorption have been deduced analytically, giving rise to a Lorentzian line-shape for the extinction spectrum. The result provides us with new insight into the phenomenon.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(350.4990) Other areas of optics : Particles

ToC Category:
Optics at Surfaces

Original Manuscript: February 9, 2009
Revised Manuscript: March 17, 2009
Manuscript Accepted: March 23, 2009
Published: April 2, 2009

Cheng-ping Huang, Xiao-gang Yin, Huang Huang, and Yong-yuan Zhu, "Study of plasmon resonance in a gold nanorod with an LC circuit model," Opt. Express 17, 6407-6413 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamental and applications (Springer, New York, 2007).
  2. E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16, 1685-1706 (2004). [CrossRef]
  3. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nanotoday 2, 18-29 (2007).
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229- 232 (2003). [CrossRef] [PubMed]
  5. C. J. Murphy and N. R. Jana, "Controlling the aspect ratio of inorganic nanorods and nanowires," Adv. Mater. 14, 80-82 (2002). [CrossRef]
  6. J. Hafner, "Gold nanoparticles are shaped for effect," Laser Focus World 42, 99-101 (2006).
  7. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006). [CrossRef] [PubMed]
  8. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley, New York, 1983).
  9. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Appl. Phys. Lett. 83, 4625-4627 (2003). [CrossRef]
  10. S. W. Prescott and P. Mulvaney, "Gold nanorod extinction spectra," J.Appl.Phys. 99, 123504 (2006). [CrossRef]
  11. L. Qiu, T.A. Larson, D. Smith, E. Vitkin, M. D. Modell, B. A. Korgel, K. V. Sokolov, E. B. Hanlon, I. Itzkan, and L. T. Perelman, "Observation of plasmon line broadening in single gold nanorods," Appl. Phys. Lett. 93, 153106 (2008). [CrossRef]
  12. S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B 103, 3073-3077 (1999). [CrossRef]
  13. L. M. Liz-Marzan, "Nanometals: formation and color," Materials Today 7, 26-31 (2004).
  14. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press, Oxford, 1984).
  15. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005). [CrossRef] [PubMed]
  16. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  17. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  18. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006). [CrossRef] [PubMed]
  19. E. S. Kooij and B. Poelsema, "Shape and size effects in the optical properties of metallic nanorods," Phys. Chem.Chem. Phys. 8, 3349-3357 (2006). [CrossRef]
  20. H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, "Thickness dependence of the optical properties of split-ring resonator metamaterials," Phys. Stat. Sol. (B) 244, 1256-1261 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited