OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6465–6475

Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs

Snjezana Tomljenovic-Hanic, Andrew D. Greentree, C. Martijn de Sterke, and Steven Prawer  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6465-6475 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design extremely flexible ultrahigh- Q diamond-based double-heterostructure photonic crystal slab cavities by modifying the refractive index of the diamond. The refractive index changes needed for ultrahigh-Q cavities with Q ~ 107, are well within what can be achieved (Δn ~ 0.02). The cavity modes have relatively small volumes V<2 (λ/n)3 , making them ideal for cavity quantum electro-dynamic applications. Importantly for realistic fabrication, our design is flexible because the range of parameters, cavity length and the index changes, that enables an ultrahigh-Q is quite broad. Furthermore as the index modification is post-processed, an efficient technique to generate cavities around defect centres is achievable, improving prospects for defect-tolerant quantum architectures.

© 2009 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: December 10, 2008
Revised Manuscript: March 31, 2009
Manuscript Accepted: March 31, 2009
Published: April 3, 2009

Snjezana Tomljenovic-Hanic, Andrew D. Greentree, C. Martijn de Sterke, and Steven Prawer, "Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs," Opt. Express 17, 6465-6475 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Mabuchi and A. C. Doherty, "Cavity quantum electrodynamics: coherence in context," Science 298, 1372 (2002). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  4. A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, "Diamond integrated quantum photonics," Mater. Today 11, 22-31 (2008). [CrossRef]
  5. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke and J. Salzman, "Diamond based photonic crystal microcavities," Opt. Express 14, 3556-3562 (2006). [CrossRef] [PubMed]
  6. S. Kühn, C. Hettich, C. Schmitt, J.-Ph. Poizat, and V. Sandoghdar, "Diamond colour centres as a nanoscopic light source for scanning near-field microscopy," J. Microsc. 202, 2-6 (2001). [CrossRef] [PubMed]
  7. J. R. Rabeau, S. T. Huntington, A. D. Greentree, and S. Prawer, "Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding," Appl. Phys. Lett. 86, 134104 (2005). [CrossRef]
  8. Y.-S. Park, A. Cook, and H. Wang, "Cavity QED with Diamond Nanocrystals and Silica Microspheres," Nano-Lett. 6, 2075-2079 (2006). [CrossRef] [PubMed]
  9. S. Schietinger, T. Schröder, and O. Benson, "One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator," Nano-Lett. 8, 3911-3915 (2008). [CrossRef] [PubMed]
  10. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feyetson, J. Yang, and J. E. Butler, "Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond," Appl. Phys. Lett. 91, 201112 (2007). [CrossRef]
  11. M. W. McCutcheon and M. Loncar, "Design of silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond crystal," Opt. Express 16, 19136-19145 (2008). [CrossRef]
  12. M. Barth, J. Stingl, J. Kouba, N. Nüsse, B. Löchel, and O. Benson, "A hybrid approach towards nanophotonic devices with enhanced functionality," Phys. Stat. Sol. 2, 298-301 (2009).
  13. M. Larsson, K. N. Dinyari, and H. Wang, "Composite optical microcavity of diamond nanopillar and silica microsphere," Nano- Lett.10.1021/nl8032944 (2009). [CrossRef] [PubMed]
  14. C. Kreuzer, J. Riedrich-Moller, E. Neu, and C. Becher, "Design of photonic crystal microcavities in diamond films," Opt. Express 16, 1632-1644 (2008). [CrossRef] [PubMed]
  15. I. Bayn and J. Salzman, "Ultra high-Q photonic crystal nanocavity design: "The effect of a low-? slab material," Opt. Express 16, 4972-4980 (2008). [CrossRef] [PubMed]
  16. J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, and B. H. Houston, "Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films," J. Vac. Sci. Technol. B 24, 50-54 (2006). [CrossRef]
  17. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, "Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond," Adv. Materials 17, 2427-2430 (2005). [CrossRef]
  18. B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, "Fabrication of ultrathin single-crystal diamond membranes," Adv. Materials 20, 4793-4798 (2008). [CrossRef]
  19. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  20. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007). [CrossRef]
  21. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007). [CrossRef] [PubMed]
  22. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006). [CrossRef] [PubMed]
  23. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, "High-Q cavities in multilayer photonic crystal slab," Opt. Express 15, 17248-17253 (2007). [CrossRef] [PubMed]
  24. R. L. Hines, "Radiation damage of diamond by 20-keV Carbon ions," Phys. Rev. 138, A1747 (1965). [CrossRef]
  25. K. L. Bhatia S. Fabian, S. Kalbitzer, Ch. Klatt, W. Krätschmer, R. Stoll, and J. F. P. Sellschop. "Optical effects in carbon-ion irradiated diamond," Thin Solid Films 324, 11-18 (1998). [CrossRef]
  26. M. Draganski, private communication, Applied Physics, RMIT University, Melbourne, Victoria 3010, Australia.
  27. X. F. He, N. B. Manson, and P. T. H. Fisk, "Paramagnetic resonance of photoexcited N-V defects in diamond. I. Level anticrossing in the 3A ground state," Phys. Rev. B 47, 8809 (1993). [CrossRef]
  28. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wracthtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett. 92, 076401 (2004). [CrossRef] [PubMed]
  29. T. Gaebel M. Domhan I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, "Room-temperature coherent coupling of single spins in diamond," Nat. Physics 2, 408-413 (2006). [CrossRef]
  30. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290 (2000). [CrossRef] [PubMed]
  31. A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I.-Y. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, "Temporal Coherence of Photons Emitted by Single Nitrogen-Vacancy Defect Centers in Diamond Using Optical Rabi-Oscillations," Phys. Rev. Lett. 100, 077401 (2008). [CrossRef] [PubMed]
  32. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, "Coherent Population Trapping of Single Spins in Diamond under Optical Excitation," Phys. Rev. Lett. 97, 247401 (2006). [CrossRef]
  33. T Gaebel, I Popa, A Gruber, M Domhan, F Jelezko, and J Wrachtrup, "Stable single-photon source in the near infrared," New J. Phys. 6, 98 (2004). [CrossRef]
  34. C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, "Single photon emission from SiV centres in diamond produced by ion implantation," J. Phys. B: At. Mol. Opt. Phys. 39, 37-41 (2006). [CrossRef]
  35. A. A. Bergman, A. M. Zaitsev, A. A. Gorokhovsky, "Polarization of luminescence and site symmetry of the Xe center in diamond," J. Lumin. 125, 92-96 (2007). [CrossRef]
  36. J. A. Larsson and P. Delaney, "Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory," Phys. Rev. B 77, 165201 (2008). [CrossRef]
  37. L. J. Rogers, S. Armstrong, M. J. Sellars and N. B. Manson, "Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies," New J. Phys. 10, 103024 (2008). [CrossRef]
  38. D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andresen, F. E. Hudson, A. S. Dzurak, and R. G. Clark, "Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions," Appl. Phys. Lett. 86, 202101 (2005). [CrossRef]
  39. F. M. Hossain, M. W. Doherty, H. F. Wilson, and L. C. L. Hollenberg, "Ab Initio Electronic and Optical Properties of the N-V- Center in Diamond," Phys. Rev. Lett. 101, 226403 (2008). [CrossRef] [PubMed]
  40. J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, "Generation of single color centers by focused nitrogen implantation," Appl. Phys. Lett. 87, 261909 (2005). [CrossRef]
  41. F. C. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Y. Wang, D. Jaksch, R. A. Taylor, I. A. Walmsley, M. Draganski, P. Reichart, A. D. Greentree, D. N. Jamieson, and S. Prawer, "Creating diamond color centers for quantum optical applications," Diamond Related Materials 16, 1887-1895 (2007). [CrossRef]
  42. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell," STED microscopy reveals crystal colour centres with nanometric resolution," Nat. Photonics 3, 144 (2009). [CrossRef]
  43. B-S. Song, T. Asano, and S. Noda, "Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure cavities," New J. Phys. 8, 209 (2006). [CrossRef]
  44. M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, "Dependencies of micro-pillar cavity quality factors calculated with finite element methods," Opt. Express 17, 1144-1158 (2009). [CrossRef] [PubMed]
  45. F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel and A. Rahmani, "Room temperature low-treshold InAs/InP quantum dot single mode photonic crystal microlaser at 1.5 ?m using cavity-confined slow light," Opt. Express 17, 5439-5445 (2009). [CrossRef] [PubMed]
  46. C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, "Towards a picosecond transform-limited nitrogen-vacancy based single photon source," Opt. Express 16, 6240-6250 (2008). [CrossRef] [PubMed]
  47. A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms", Phys. Rev. A 73, 013818 (2006). [CrossRef]
  48. S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O'Brien, W. J. Munro, and L. C. L. Hollenberg, "Photonic module: an on-demand resource for photonic entanglement," Phys. Rev. A 76, 052312 (2007). [CrossRef]
  49. C. H. Su, A. D. Greentree, W. J. Munro, K. Nemoto, and L. C. L. Hollenberg, "High speed quantum gates with cavity quantum electrodynamics," Phys. Rev. A 78, 062336 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited