OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6519–6524

Efficiency enhancement in GaAs solar cells using self-assembled microspheres

Te-Hung Chang, Pei-Hsuan Wu, Sheng-Hui Chen, Chia-Hua Chan, Cheng-Chung Lee, Chii -Chang Chen, and Yan-Kuin Su  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6519-6524 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study we develop an efficient light harvesting scheme that can enhance the efficiency of GaAs solar cells using self-assembled microspheres. Based on the scattering of the microspheres and the theory of photonic crystals, the path length can be increased. In addition, the self-assembly of microspheres is one of the simplest and the fastest methods with which to build a 2D periodic structure. The experimental results are confirmed by the use of a simulation in which a finite-difference time-domain (FDTD) method is used to analyze the absorption and electric field of the 2D periodic structure. Both the results of the numerical simulations and the experimental results show an increase in the conversion power efficiency of GaAs solar cell of about 25% when 1 μm microspheres were assembled on the surface of GaAs solar cells.

© 2009 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4670) Materials : Optical materials

ToC Category:

Original Manuscript: February 2, 2009
Revised Manuscript: March 31, 2009
Manuscript Accepted: April 1, 2009
Published: April 3, 2009

Te-Hung Chang, Pei-Hsuan Wu, Sheng-Hui Chen, Chia-Hua Chan, Cheng-Chung Lee, Chii -Chang Chen, and Yan-Kuin Su, "Efficiency enhancement in GaAs solar cells using self-assembled microspheres," Opt. Express 17, 6519-6524 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Mihi and H. Míguez, "Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells," J. Phys. Chem. B 109, 15968-15976 (2005). [CrossRef]
  2. A. Mihi, F. J. López-Alcaraz, and H. Míguez, "Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers," Appl. Phys. Lett. 88, 193110-1-193110-3 (2006). [CrossRef]
  3. M. A. Green, "Two new efficient crystalline silicon light-trapping textures," Prog. Photovolt. Res. Appl. 7, 317-320 (1999). [CrossRef]
  4. F. C. Marques, "Sprayed SnO Antireflection Coating on Textured Silicon Surface for Solar Cell Applications," IEEE Trans. Electron. Devices 45, 1619-1622 (1998). [CrossRef]
  5. M. Tao, W. Zhou, H. Yang, and L. Chen, "Surface texturing by solution deposition for omnidirectional antireflection," Appl. Phys. Lett. 91, 081118-1-081118-3 (2007). [CrossRef]
  6. E. Yablonovitch and G. D. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Trans. Electron. Devices 29, 300-305 (1982). [CrossRef]
  7. C. H. Chan, C. C. Chen, C. K. Huang, W. H. Weng, H. S. Wei, H. Chen, H. T. Lin, H. S. Chang, W. Y. Chen, W. H. Chang, and T. M. Hsu, "Self-assembled free-standing colloidalcrystals," Nanotechnology 16, 1440-1444 (2005). [CrossRef]
  8. P. H. Wu, Y. K. Su, Y. C. T., H. F. Hong, K. Y. Chu, and Y. R. Chen, "A novel GaAsN/InGaAs strain-compensated multi-quantum wells solar cell," Semicond. Sci. Technol. 22, 549-552 (2007). [CrossRef]
  9. Y. Ohtera, K. Miura, and T. Kawashima, "Ge/SiO2 Photonic Crystal Multichannel Wavelength Filters for Short Wave Infrared Wavelengths," Jpn. J. Appl. Phys. 46, 1511-1515 (2007). [CrossRef]
  10. C. Y. Tai, S. H. Chang, and T. C. Chiu, "Design and Analysis of an Ultra-Compact and Ultra-Wideband Polarization Beam Splitter Based on Coupled Plasmonic Waveguide Arrays," IEEE Photon. Technol. Lett. 19, 1448-1450 (2007). [CrossRef]
  11. W. J. Choi, Q. H. Park, D. Kim, H. Jeon, C. Sone, and Y. Park, "FDTD Simulation for Light Extraction in a GaN-Based LED," J. Korean Phys. Soc. 49, 877-880 (2006).
  12. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic-waves," J. Comput. Phys,  114, 185-200 (1994). [CrossRef]
  13. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, (Norwood 1995).
  14. C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51,16635-16642 (1995). [CrossRef]
  15. M. Qiu and S. He, "Modeling of the spectral response of AlxGa1-xN Schottky ultraviolet photodetectors," J. Appl. Phys 87, 8286-8290 (2000). [CrossRef]
  16. M. Qiu and S. He, "Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions," Phys. Rev. B 61,12871-12876 (2000). [CrossRef]
  17. M. Qiu and S. He, "Guided modes in a two-dimensional metallic photonic crystal waveguide," Phys. Lett. A 266, 425-429 (2000). [CrossRef]
  18. H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, and M. Ocanã, V. Fornes, and A. Mifsud, "Photonic crystal properties of packed submicrometric SiO2 spheres," Appl. Phys. Lett. 71, 1148-1150 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited