OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6525–6531

Backreflected radiation due to a propagating fiber fuse

Kazi S. Abedin, Masataka Nakazawa, and Tetsuya Miyazaki  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6525-6531 (2009)
http://dx.doi.org/10.1364/OE.17.006525


View Full Text Article

Enhanced HTML    Acrobat PDF (369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The properties of backreflected light due to voids in a fiber fuse were studied using optical coherence-domain reflectometry of a damaged fiber and real-time monitoring of the electrical (RF) spectrum. Light reflected backward at the interface of a propagating fiber fuse acquired low-frequency broadband amplitude modulation, which can be detected remotely at the source end, using an RF spectrum analyzer. For the light backreflected during propagation of a fiber fuse, we derived an analytical expression that well explained the spectral features observed experimentally in the RF spectrum. Finally, a novel method that allowed us to rapidly terminate the fiber fuse propagation (in a few milliseconds) is also shown.

© 2009 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(350.1820) Other areas of optics : Damage

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 13, 2009
Revised Manuscript: March 31, 2009
Manuscript Accepted: March 31, 2009
Published: April 3, 2009

Citation
Kazi S. Abedin, Masataka Nakazawa, and Tetsuya Miyazaki, "Backreflected radiation due to a propagating fiber fuse," Opt. Express 17, 6525-6531 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6525


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibers," Electron. Lett. 24, 47-49 (1988). [CrossRef]
  2. D. P. Hand and P. St. J. Russell, "Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse," Opt. Lett. 13, 767-769 (1988). [CrossRef] [PubMed]
  3. D. D. Davis, S. C. Mettler, and D. J. Digiovanni, "A comparative evaluation of fiber fuse models in laser-induced damage in optical materials," Proc. SPIE 2966, 592-606 (1997).
  4. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, "Fiber fuse generation in single-mode fiber-optic connectors," IEEE Photon. Technol. Lett. 16, 174-176 (2004). [CrossRef]
  5. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, "Fiber fuse phenomenon in triangular-profile single-mode optical fiber," J. Lightwave Technol. 24, 846-852 (2006). [CrossRef]
  6. E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, "Fiber fuse effect in microstructured fibers," IEEE Photon. Technol. Lett. 16, 180-181 (2004). [CrossRef]
  7. E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, "Catastrophic destruction of fluoride and chalcogenide fibers," Electron. Lett. 38, 783-784 2002. [CrossRef]
  8. M. M. Lee, J. M. Roth, T. G. Ulmer, and C. V. Cryan, "The fiber fuse phenomenon in polarization-maintaining fibers at 1.55 ?m," in Conference on Lasers and Electro-Optics, Technical Digest (Optical Society of America, 2006), paper JWB66.
  9. S.-I. Todoroki, "In-situ observation of fiber-fuse propagation," Jpn. J. Appl. Phys. 44, 4022-4024 (2005). [CrossRef]
  10. R. M. Percival, E. S. R. Sikora, and R. Wyatt, "Catastrophic damage and accelerated aging in bent fibers caused by high optical powers," Electron. Lett. 36, 414-416 (2000). [CrossRef]
  11. D. P. Hand and T. A. Birks, "Single mode tapers as fiber fuse damage circuit breakers," Electron. Lett. 25, 33-34 (1989). [CrossRef]
  12. R. Wyatt, R. M. Percival and R. Kashyap, "Optical communication system and method of protecting an optical route," U.S.A. Patent 7,162161 (2007).
  13. K. Takenaga, S. Omori, R. Goto, S. Tanigawa, S. Matsuo, and K. Himeno, "Evaluation of high-power endurance of bend-insensitive fibers," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2008), paper JWA11.
  14. K. S. Abedin and T. Morioka, "Remote detection of fiber fuse propagation in optical fibers," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2009), paper OThD5.
  15. R. Kashyap, "High average power effects in optical fiber and devices," Proc. SPIE 4940, 108-117 (2003). [CrossRef]
  16. R. M. Atkins, P. G. Simpkins, and A. D. Yablon, "Track of a fiber fuse: a Rayleigh instability in optical waveguides," Opt. Lett. 28, 974-976 (2003). [CrossRef] [PubMed]
  17. R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry: a new optical evolution technique," Opt. Lett. 12, 158-160 (1987). [CrossRef] [PubMed]
  18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  19. J. M. Smith, "Optical coherence tomography: A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  20. A. Gh. Podoleanu, "Optical coherence tomography," Br. J. Radiol. 78, 976-988 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited