OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6532–6539

1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser

Ole Bjarlin Jensen, Peter E. Andersen, Bernd Sumpf, Karl-Heinz Hasler, Götz Erbert, and Paul Michael Petersen  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6532-6539 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (656 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



More than 1.5 W of green light at 531 nm is generated by single-pass second harmonic generation in periodically poled MgO:LiNbO3. The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity. The output power of the single-frequency tapered laser is 9.3 W in continuous wave operation. A conversion efficiency of 18.5 % was achieved in the experiments.

© 2009 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 11, 2009
Revised Manuscript: April 1, 2009
Manuscript Accepted: April 1, 2009
Published: April 6, 2009

Ole B. Jensen, Peter E. Andersen, Bernd Sumpf, Karl-Heinz Hasler, Götz Erbert, and Paul Michael Petersen, "1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser," Opt. Express 17, 6532-6539 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. McDonagh and R. Wallenstein, "Low-noise 62 W CW intracavity-doubled TEM00 Nd:YVO4 green laser pumped at 888 nm," Opt. Lett. 32, 802-804 (2007). [CrossRef] [PubMed]
  2. S. V. Tovstong, S. Kurimura, and K. Kitamura, "High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate," Appl. Phys. Lett. 90, 051115 (2007). [CrossRef]
  3. H. K. Nguyen, M. H. Hu, N. Nishiyama, N. J. Visovsky, Y. Li, K. Song, X. Liu, J. Gollier, L. C. Hughes, R. Bhat, and C.-E. Zah, "107-mW low-noise green-light emission by frequency doubling of a reliable 1060 nm DFB semiconductor laser diode," IEEE Photon. Technol. Lett. 18, 682-684 (2006). [CrossRef]
  4. M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser," Appl. Phys. Lett. 83, 3659-3661 (2003). [CrossRef]
  5. K. Sakai, Y. Koyata, and Y. Hirano, "Planar-waveguide quasi-phase-matched second-harmonic-generation device in Y-cut MgO-doped LiNbO3," Opt. Lett. 31, 3134-3136 (2006). [CrossRef] [PubMed]
  6. K. Sakai, Y. Koyata, N. Shimada, K. Shibata, Y. Hanamaki, S. Itakura, T. Yagi, and Y. Hirano, "Master-oscillator power-amplifier scheme for efficient green-light generation in a planar MgO:PPLN waveguide," Opt. Lett. 33, 431-433 (2008). [CrossRef] [PubMed]
  7. M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, "600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal," Opt. Lett. 31, 802-804 (2006). [CrossRef] [PubMed]
  8. M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, "Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier," Opt. Express 13, 10589-10596 (2005). [CrossRef] [PubMed]
  9. R. Parke, D. F. Welch, A. Hardy, R. Lang, D. Mehuys, S. O’Brien, K. Dzurko, and D. Scifres, "2.0 W CW, diffraction-limited operation of a monolithically integrated master oscillator power amplifier," IEEE Photon. Technol. Lett. 5, 297-300 (1993). [CrossRef]
  10. M. Uebernickel, C. Fiebig, G. Blume, K. Paschke, B. Eppich, R. Güther, and G. Erbert, „400 mW and 16.5% wavelength conversion efficiency at 488 nm using a diode laser and a PPLN crystal in single-pass configuration," Appl. Phys. B 93, 823-827 (2008). [CrossRef]
  11. K. Paschke, J. Behrendt, M. Maiwald, J. Fricke, H. Wenzel, and G. Erbert, "High-power, single mode 980 nm DBR tapered diode lasers with integrated 6th order surface gratings based on simplified fabrication process," Proc. SPIE 6184, 618401 (2006). [CrossRef]
  12. A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, "High-power 808-nm lasers with a super-large optical cavity," Semicond. Sci. Technol. 20, 621-624 (2005). [CrossRef]
  13. G. D. Boyd and D. A. Kleinman, "Parametric Interaction of Focused Gaussian Light Beams," J. Appl. Phys. 39, 3597-3639 (1968). [CrossRef]
  14. G. Blume, M. Uebernickel, C. Fiebig, K. Paschke, A. Ginola, B. Eppich, R. Güther, and G. Erbert, "Rayleigh length dependent SHG conversion at 488nm using a monolithic DBR tapered diode laser," Proc. SPIE 6875, 68751C-1-12 (2008). [CrossRef]
  15. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer," Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  16. D. E. Zelmon, D. L. Small, and D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate," J. Opt. Soc. Am. B 14, 3319-3322 (1997). [CrossRef]
  17. G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-374 (1984). [CrossRef]
  18. Y. S. Kim and R. T. Smith, "Thermal expansion of lithium tantalate and lithium niobate single crystals," J. Appl. Phys. 40, 4637-4641 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited