OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6540–6549

Field test of a practical secure communication network with decoy-state quantum cryptography

Teng-Yun Chen, Hao Liang, Yang Liu, Wen-Qi Cai, Lei Ju, Wei-Yue Liu, Jian Wang, Hao Yin, Kai Chen, Zeng-Bing Chen, Cheng-Zhi Peng, and Jian-Wei Pan  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6540-6549 (2009)
http://dx.doi.org/10.1364/OE.17.006540


View Full Text Article

Enhanced HTML    Acrobat PDF (237 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a secure network communication system that operated with decoy-state quantum cryptography in a real-world application scenario. The full key exchange and application protocols were performed in real time among three nodes, in which two adjacent nodes were connected by approximate 20 km of commercial telecom optical fiber. The generated quantum keys were immediately employed and demonstrated for communication applications, including unbreakable real-time voice telephone between any two of the three communication nodes, or a broadcast from one node to the other two nodes by using one-time pad encryption.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(270.0270) Quantum optics : Quantum optics
(060.5565) Fiber optics and optical communications : Quantum communications

ToC Category:
Quantum Optics

History
Original Manuscript: October 9, 2008
Revised Manuscript: March 4, 2009
Manuscript Accepted: March 18, 2009
Published: April 6, 2009

Citation
Teng-Yun Chen, Hao Liang, Yang Liu, Wen-Qi Cai, Lei Ju, Wei-Yue Liu, Jian Wang, Hao Yin, Kai Chen, Zeng-Bing Chen, Cheng-Zhi Peng, and Jian-Wei Pan, "Field test of a practical secure communication network with decoy-state quantum cryptography," Opt. Express 17, 6540-6549 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6540


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of the IEEE International Conferenceon Computers, Systems and Signal Processing, (Bangalore, India, 1984), pp. 175-179.
  2. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "‘Plug and play’ systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997). [CrossRef]
  3. T. Nishioka, H. Ishizuka, T. Hasegawa, and J. Abe, "‘Circular type’ quantum key distribution," Photon. Technol. Lett. 14, 576-578 (2002). [CrossRef]
  4. F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using Gaussian-modulated coherent states," Nature 421, 238-241 (2003). [CrossRef] [PubMed]
  5. C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004). [CrossRef]
  6. C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005). [CrossRef] [PubMed]
  7. T.-Y. Chen, J. Zhang, J.-C. Boileau, X.-M. Jin, B. Yang, Q. Zhang, T. Yang, R. Laflamme, and J. W. Pan, "Experimental quantum communication without a shared reference frame," Phys. Rev. Lett. 96, 150504 (2006). [CrossRef] [PubMed]
  8. T. Honjo, K. Inoue, A. Sahara, E. Yamazaki, and H. Takahashi, "Quantum key distribution experiment through a PLC matrix switch," Opt. Commun. 263, 120-123 (2006). [CrossRef]
  9. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007). [CrossRef]
  10. Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," eprint arxiv:quant-ph/0809.4018 (2008).
  11. B. Huttner, N. Imoto, N. Gisin, and T. Mor, "Quantum cryptography with coherent states," Phys. Rev. A 51, 1863 (1995). [CrossRef] [PubMed]
  12. G. Brassard, N. Lutkenhaus, T. Mor and B. C. Sanders, "Limitations on Practical Quantum Cryptography," Phys. Rev. Lett. 85, 1330 (2000). [CrossRef] [PubMed]
  13. D. Gottesman, H.-K. Lo, N. Lutkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comput. 5, 325-360 (2004).
  14. H. Inamori, N. Ltkenhaus, and D. Mayers, "Unconditional security of practical quantum key distribution," Eur. Phys. J. D 41, 599-627 (2007). [CrossRef]
  15. W. Y. Hwang, "Quantum key distribution with high loss: toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003). [CrossRef] [PubMed]
  16. H.-K. Lo, Proceedings of IEEE ISIT (International Symposium on Information Theory) 2004, p. 137 (IEEE Press. 2004)).
  17. H.-K. Lo, X.-F. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005). [CrossRef] [PubMed]
  18. X.-B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
  19. Y. Zhao, B. Qi, X.-F. Ma, H.-K. Lo, and L. Qian, "Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502 (2006). [CrossRef] [PubMed]
  20. Y. Zhao, B. Qi, X. F. Ma, H.-K. Lo, and L.  Qian, "Simulation and Implementation of Decoy State Quantum Key Distribution over 60km Telecom Fiber," Proceedings of IEEE International Symposium on Information Theory 2006, pp. 2094-2098.
  21. C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, "Experimental long-distance decoy-state quantum key distribution dased on polarization encoding," Phys. Rev. Lett. 98, 010505 (2007). [CrossRef] [PubMed]
  22. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-distance decoy-state quantum key distribution in optical fiber," Phys. Rev. Lett. 98, 010503 (2007). [CrossRef] [PubMed]
  23. T. Schmitt-Manderbach, H. Weier, M. Furst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, "Experimental demonstration of free-space decoy-state quantum key distribution over 144 km," Phys. Rev. Lett. 98, 010504 (2007). [CrossRef] [PubMed]
  24. Z. L. Yuan, A.W. Sharpe, and A.J. Shields, "Unconditionally secure one-way quantum key distribution using decoy pulses," Appl. Phys. Lett. 90, 011118 (2007). [CrossRef]
  25. S. J. D. Phoenix, S. M. Barnett, P. D. Townsend, and K. J. Blow, "Multi-user quantum cryptography on optical networks," J. Mod. Opt. 72, 1155-1163 (1995). [CrossRef]
  26. P. D. Townsend, S.J.D. Phonenix, K. J. Blow, and S. M. Barnett, "Quantum cryptography for multi-user passive optical networks," Electron. Lett. 30, 1875-1877 (1994). [CrossRef]
  27. P. D. Townsend, "Quantum cryptography on multi-user optical fibre networks," Nature 385, 47-49 (1997). [CrossRef]
  28. C. Elliott, "Building the quantum network," New J. Phys. 4,46 (2002). [CrossRef]
  29. C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, "Current status of the DARPA Quantum Network," in Quantum Information and Computation III, E. J. Donkor, A. R. Pirich, and H. E. Brandt, eds., Proc. SPIE 5815, 138-149 (2005). [CrossRef]
  30. X. Tang, L.-J. Ma, A. Mink, A. Nakassis, H. Xu, B. Hershman, J. Bienfang, D. Su, R. F. Boisvert, C. Clark, and C. Williams, "Demonstration of an active quantum key distribution network," Proc. SPIE 6305, 630506 (2006). [CrossRef]
  31. SECOQC White Paper on Quantum Key Distribution and Cryptography, http://www.secoqc.net/downloads/secoqc crypto wp.pdf, accessed Feb. 2009.
  32. W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field experimental ‘star type’ metropolitan quantum key distribution network," eprint arxiv:quant-ph/0708.3546 (2007).
  33. G. S. Vernam, "Cipher printing telegraph system for secret wire and radio telegraph communications", J. Am. Inst. Electr. Eng. XLV,109-115 (1926).
  34. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92,201104 (2008). [CrossRef]
  35. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, and A. A. Rochas, "Low jitter up-conversion detectors for telecom wavelength GHz QKD", I. Rech, S. Cova, H. Zbinden, and N. Gisin, New J. Phys. 8,32 (2006).
  36. E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, "100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors", Opt. Express 14,13073 (2006). [CrossRef] [PubMed]
  37. D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, "High speed coherent one-way quantum key distribution prototype", eprint arxiv:quant-ph/0809.5264 (2008).
  38. H.-K. Lo, H. F. Chau, and M. Ardehali, "Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security", J. Cryptology 18,133 (2005)). [CrossRef]
  39. X.-B. Wang, "Decoy-state protocol for quantum cryptography with four different intensities of coherent light," Phys. Rev. A 72,012322 (2005). [CrossRef]
  40. X.-F. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72,012326 (2005). [CrossRef]
  41. A. Nakassis, J. C. Bienfang, and C. J. Williams, "Expeditious reconciliation for practical quantum key distribution," Proc. SPIE 5436,28-35 (2004). [CrossRef]
  42. G. Brassard, L. Salvail, Advances in Cryptology EUROCRYPT ’93, Vol. 765 of Lecture Notes in Computer Science, (Springer, Berlin, 1994), pp. 410-423.
  43. H. Krawczyk, "LFSR-based Hashing and Authentication", in Advances in Cryptology - CRYPTO ’94, Y. G. Desmedt, ed., Vol. 839 of Lecture Notes in Computer Science, (Springer-Verlag London, 1994), pp. 129-139.
  44. http://csrc.nist.gov/groups/ST/toolkit/rng/index.html.
  45. G. Marsaglia, A. Zaman, andW. W. Tsang, "Toward a universal random number generator," Stat. Prob. Lett. 9, 35C39 (1990). http://www.stat.fsu.edu/pub/diehard/, accessed Feb. 2009. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited