OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6623–6628

Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate

D. Molter, M. Theuer, and R. Beigang  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6623-6628 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an optical parametric oscillator pumped by a single mode Q-switched nanosecond Nd:YVO4 laser for terahertz generation in periodically poled lithium niobate with a new phase matching scheme. This new method leads to an emission of terahertz radiation close to the Cherenkov angle and to a parallel propagation of the pump and signal wave. The emission frequency of this novel source is chosen by the poling period to 1.5 THz. For spectral narrowing the signal wave of the OPO is injection seeded. In the optical spectrum also cascaded processes are observed demonstrating a powerful generation of terahertz waves.

© 2009 Optical Society of America

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(230.6080) Optical devices : Sources

ToC Category:
Nonlinear Optics

Original Manuscript: February 10, 2009
Revised Manuscript: March 31, 2009
Manuscript Accepted: April 4, 2009
Published: April 7, 2009

D. Molter, M. Theuer, and R. Beigang, "Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate," Opt. Express 17, 6623-6628 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Kawase, J.-i. Shikata, and H. Ito, "Terahertz wave parametric source," J. Phys. D: Appl. Phys. 35, R1-R14 (2002). [CrossRef]
  2. T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, and M. H. Dunn, "Compact source of continuously and widelytunable terahertz radiation," Opt. Express 14, 1582-1589 (2006). [CrossRef] [PubMed]
  3. J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, "Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate Part 2: Experiments," Appl. Phys. B 86, 197- 208 (2006). [CrossRef]
  4. C. Weiss, G. Torosyan, J.-P. Meyn, R. Wallenstein, R. Beigang, and Y. Avetisyan, "Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate," Opt. Express 8, 497-502 (2001). [CrossRef] [PubMed]
  5. Y. Sasaki, Y. Avetisyan, K. Kawase, H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323 (2002). [CrossRef]
  6. M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, "Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler," Appl. Phys. Lett. 88, 071122 (2006). [CrossRef]
  7. T. W. H¨ansch, and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980). [CrossRef]
  8. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser Phase and Frequency Stabilization using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  9. L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of MgO:doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005). [CrossRef]
  10. K. L. Vodopyanov, "Optical THz-wave generation with periodically-inverted GaAs," Laser & Photon. Rev. 2, 11-25 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited