OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6643–6654

Cavity mode emission in weakly coupled quantum dot - cavity systems

T Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and T. Sogawa  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6643-6654 (2009)
http://dx.doi.org/10.1364/OE.17.006643


View Full Text Article

Enhanced HTML    Acrobat PDF (1498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the origin of bright leaky-cavity mode emission and its influence on photon statistics in weakly coupled quantum dot -semiconductor cavity systems, which consist of a planar photonic-crystal and several quantum dots. We present experimental measurements that show that when the system is excited above the barrier energy, then bright cavity mode emissions with nonzero detuning are dominated by radiative recombinations of deep-level defects in the barrier layers. Under this excitation condition, the second-order photon autocorrelation measurements reveal that the cavity mode emission at nonzero detuning exhibits classical photon-statistics, while the bare exciton emission shows a clear partial anti-bunching. As we enter a Purcell factor enhancement regime, signaling a clear cavity-exciton coupling, the relative weight of the background recombination contribution to the cavity emission decreases. Consequently, the anti-bunching behavior is more significant than the bare exciton case – indicating that the photon statistics becomes more non-classical. These measurements are qualitatively explained using a medium-dependent master equation model that accounts for several excitons and a leaky cavity mode.

© 2009 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Quantum Optics

History
Original Manuscript: March 9, 2009
Revised Manuscript: April 3, 2009
Manuscript Accepted: April 3, 2009
Published: April 7, 2009

Citation
T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and T. Sogawa, "Cavity mode emission in weakly coupled quantum dot - cavity systems," Opt. Express 17, 6643-6654 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
  2. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, E.Waks, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. B 69, 205324 (2004). [CrossRef]
  3. S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704 (2007). [CrossRef]
  4. D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, "Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz," New J. Phys. 10, 043035 (2008). [CrossRef]
  5. A. Kiraz, M. Atature and A. Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing," Phys. Rev. A 69, 032305 (2004). [CrossRef]
  6. J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004). [CrossRef] [PubMed]
  7. T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Appl. Phys. Lett. 92, 081906 (2008). [CrossRef]
  8. D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007). [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004). [CrossRef] [PubMed]
  10. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007). [CrossRef] [PubMed]
  11. M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, "Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities," Phys. Rev. B 77, 161303 (2008). [CrossRef]
  12. S. Hughes and P. Yao, "Theory of quantum light emission from a strongly-coupled single quantum dot photoniccrystal cavity system," Opt. Express 17, 3322 (2009). [CrossRef] [PubMed]
  13. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999). [CrossRef]
  14. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  15. N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005). [CrossRef]
  16. T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, "Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities," Opt. Express 16, 5199 (2008). [CrossRef] [PubMed]
  17. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005). [CrossRef]
  18. T. Takagahara, "Theory of exciton dephasing in semiconductor quantum dots," Phys. Rev. B 60, 2638 (1999). [CrossRef]
  19. B. Krummheuer, V. M. Axt and T. Kuhn "Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots," Phys. Rev. B 65, 195313 (2002). [CrossRef]
  20. P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401 (2001). [CrossRef] [PubMed]
  21. T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe and T. Sogawa, "Cavity-QED assisted "attraction" between an exciton and a cavity mode in a planar photonic crystal cavity," Submitted.
  22. H. Kukimoto, C. H. Henry and F. R. Merritt, "Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration," Phys. Rev. B 7, 2486 (1973). [CrossRef]
  23. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  24. E. Illes, P. Yao, and S. Hughes, "Unusual quantum correlations and photon antibunching in an off-reson quantum dot photonic-crystal cavity system," Accepted for CLEO/IQEC (Paper: ITuJ3), Baltimore, 2009.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited