OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6676–6681

Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation

Koji Suizu, Kaoru Koketsu, Takayuki Shibuya, Toshihiro Tsutsui, Takuya Akiba, and Kodo Kawase  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6676-6681 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (168 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Terahertz (THz) wave generation based on nonlinear frequency conversion is promising way for realizing a tunable monochromatic bright THz-wave source. Such a development of efficient and wide tunable THz-wave source depends on discovery of novel brilliant nonlinear crystal. Important factors of a nonlinear crystal for THz-wave generation are, 1. High nonlinearity and 2. Good transparency at THz frequency region. Unfortunately, many nonlinear crystals have strong absorption at THz frequency region. The fact limits efficient and wide tunable THz-wave generation. Here, we show that Cherenkov radiation with waveguide structure is an effective strategy for achieving efficient and extremely wide tunable THz-wave source. We fabricated MgO-doped lithium niobate slab waveguide with 3.8 μm of thickness and demonstrated difference frequency generation of THz-wave generation with Cherenkov phase matching. Extremely frequency-widened THz-wave generation, from 0.1 to 7.2 THz, without no structural dips successfully obtained. The tuning frequency range of waveguided Cherenkov radiation source was extremely widened compare to that of injection seeded-Terahertz Parametric Generator. The tuning range obtained in this work for THz-wave generation using lithium niobate crystal was the widest value in our knowledge. The highest THz-wave energy obtained was about 3.2 pJ, and the energy conversion efficiency was about 10-5 %. The method can be easily applied for many conventional nonlinear crystals, results in realizing simple, reasonable, compact, high efficient and ultra broad band THz-wave sources.

© 2009 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: March 13, 2009
Revised Manuscript: April 5, 2009
Manuscript Accepted: April 6, 2009
Published: April 7, 2009

Koji Suizu, Kaoru Koketsu, Takayuki Shibuya, Toshihiro Tsutsui, Takuya Akiba, and Kodo Kawase, "Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation," Opt. Express 17, 6676-6681 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, " Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972). [CrossRef]
  2. A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994). [CrossRef]
  3. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002). [CrossRef]
  4. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, "Tunable terahertz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003). [CrossRef]
  5. Y. Avetisyan, Y. Sasaki, and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).
  6. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984). [CrossRef]
  7. D. A. Kleinman and D. H. Auston, "Theory of electro-optic shock radiation in nonlinear optical media," IEEE J. Quantum Electron. 20, 964-970 (1984). [CrossRef]
  8. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express 10, 1161-1166 (2002). [PubMed]
  9. J. K. Wahlstrand and R. Merlin, "Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons," Phys. Rev. B 68, 054301 (2003). [CrossRef]
  10. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 ?J ultrashort THz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007). [CrossRef]
  11. S. B. Bodrov, A. N. Stepanov, M. I. Bakunov, B. V. Shishkin, I. E. Ilyakov, and R. A. Akhmedzhanov, "Highly efficient optical-to-terahertz conversion in a sandwich structure with LiNbO3 core," Opt. Express 17, 1871-1879 (2009). [CrossRef] [PubMed]
  12. K. Suizu, T. Tutui, T. Shibuya, T. Akiba, and K. Kawase, "Cherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with lithium niobate crystal," Opt. Express 16, 7493-7498 (2008). [CrossRef] [PubMed]
  13. T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, "Efficient Cherenkov-Type Phase-Matched Widely Tunable THz-Wave Generation via an Optimized Pump Beam Shape," Appl. Phys. Express 2, 032302 (2009). [CrossRef]
  14. D. E. Zelmon, D. L. Small, and D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate," J. Opt. Soc. Am. B 14, 3319-3322 (1997). [CrossRef]
  15. K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-197 (2002). [CrossRef]
  16. Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41, 712-713 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig.3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited