OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6770–6781

Absorption of light by extremely shallow metallic gratings: metamaterial behavior

Evgeny Popov, Stefan Enoch, and Nicolas Bonod  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6770-6781 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Extremely shallow lamellar metallic gratings are shown to totally absorb incident light inside a wide angular interval. The full absorption still holds at the homogeneization limit when the period tends toward zero. It is shown that a lamellar grating, illuminated in normal incidence and in transerve magnetic polarization with a period lower than 1/, of the vacuum wavelength behaves like a dielectric one with a high refractive index. The full absorption is then not due to the excitation of surface plasmon but either to Fabry-Perot resonance or Brewster effect, depending on the corrugated layer thickness.

© 2009 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

Original Manuscript: January 22, 2009
Revised Manuscript: March 4, 2009
Manuscript Accepted: March 4, 2009
Published: April 9, 2009

Evgeny Popov, Stefan Enoch, and Nicolas Bonod, "Absorption of light by extremely shallow metallic gratings: metamaterial behavior," Opt. Express 17, 6770-6781 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phylos. Mag. 4, 396-402 (1902).
  2. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)," J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  3. D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, "Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of the surface-enhanced Raman scattering," Phys. Rev. Lett. 45, 355-358 (1980). [CrossRef]
  4. R. Reinisch and M. Nevière, "Electromagnetic theory of diffraction in nonlinear optics and surface-enhanced nonlinear optical effects," Phys. Rev. B 28, 1870-1885 (1983). [CrossRef]
  5. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-829 (2003). [CrossRef] [PubMed]
  6. M. C. Hutley and D. Maystre, "Total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976). [CrossRef]
  7. M. Nevière, D. Maystre, R. C. McPhedran, G. H. Derrick and M. C. Hutley, "On the total absorption of unpolarized monochromatic light," Proceedings of the ICO-11 Conference, Madrid, Spain, pp. 609-612 (1978).
  8. E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, "Total absorption of unpolarized light by crossed gratings," Opt. Express 16, 6146-6155 (2008). [CrossRef] [PubMed]
  9. E. Popov, S. Enoch, G. Tayeb, M. Nevière, B. Gralak, and N. Bonod, "Enhanced transmission due to non-plasmon resonances in one and two dimensional gratings," Appl. Opt. 43, 999-1008 (2004). [CrossRef] [PubMed]
  10. T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, "Omnidirectional absorption in nanostuctured metal surfaces," Nat. Photonics 2, 299-301 (2008). [CrossRef]
  11. N. Bonod and E. Popov, "Total light absorption in a wide range of incidence by nanostructured metals without plasmons," Opt. Lett. 33, 2398-2400 (2008). [CrossRef] [PubMed]
  12. P. M. Ajayan, "Experimental observation of an extremely dark material made by a low-density nanotube array," Nano. Lett. 8, 446 (2008). [CrossRef] [PubMed]
  13. V. G. Kravets, F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B 78, 205405 (2008). [CrossRef]
  14. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett. 100, 066408 (2008). [CrossRef] [PubMed]
  15. S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory of periodic dielectric waveguides," IEEE Trans. Microwave Theory Tech. 23, 123-133 (1975). [CrossRef]
  16. E. I. Krupitsky and B. C. Chernov, "Rigorous analysis of arbitrary slanted volume holographic gratings," (in Russian), Proc. IX All-Union School of Holography, Leningrad, 1977, pp 84-95.
  17. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  18. P. Lalanne and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A 13, 779-784 (1996). [CrossRef]
  19. G. Granet and B. Guizal, "Efficient implementation of the coupled-wave method for metallic gratings in TM polarization," J. Opt. Soc. Am. A 13, 1019-1023 (1996). [CrossRef]
  20. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  21. M. Nevère and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, New York, 2003).
  22. E. D. Palik, ed. Handbook of Optical Constants of Solids (Academic Press, 1985)
  23. http://www.luxpop.com/
  24. R. C. McPhedran, L. C. Botten, M. Craig, M. Nevière, and D. Maystre, "Lossy lamellar gratings in the quasistatic limit," Opt. Acta 29, 289-312 (1982). [CrossRef]
  25. G. Bouchitte and R. Petit, "Homogenization techniques as applied in the electromagnetic theory of gratings," Electromagnetics 5, 17-36 (1985). [CrossRef]
  26. E. Popov and S. Enoch, "Mystery of the double limit in homogenisation of finitely or perfectly conducting periodic structures," Opt. Lett. 32, 3441-3443 (2007). [CrossRef] [PubMed]
  27. J. C. Maxwell-Garnet, "Colors in metal glasses and in metallic films," Philos. Trans. R. Soc. London, Ser. A 203, 385-420 (1904). [CrossRef]
  28. A. D. Yaghjian, "Electric dyadic Green's functions in the source region," Proc. IEEE 68, 248-263, (1980). [CrossRef]
  29. M. Nevière, "The homogeneous problem," in Electromagnetic theory of gratings, R. Petit, ed., (Springer-Verlag, 1980), Chap. 5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited