OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6790–6798

Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition

Min-Kyo Seo, Ju-Hyung Kang, Myung-Ki Kim, Byeong-Hyeon Ahn, Ju-Young Kim, Kwang-Yong Jeong, Hong-Gyu Park, and Yong-Hee Lee  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6790-6798 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (3647 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A wavelength-scale cavity is generated by printing a carbonaceous nano-block on a photonic-crystal waveguide. The nanometer-size carbonaceous block is grown at a pre-determined region by the electron-beam-induced deposition method. The wavelength-scale photonic-crystal cavity operates as a single mode laser, near 1550 nm with threshold of ~100 μW at room temperature. Finite-difference time-domain computations show that a high-quality-factor cavity mode is defined around the nano-block with resonant wavelength slightly longer than the dispersion-edge of the photonic-crystal waveguide. Measured near-field images exhibit photon distribution well-localized in the proximity of the printed nano-block. Linearly-polarized emission along the vertical direction is also observed.

© 2009 Optical Society of America

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(140.3945) Lasers and laser optics : Microcavities
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: February 2, 2009
Revised Manuscript: March 26, 2009
Manuscript Accepted: April 6, 2009
Published: April 9, 2009

Min-Kyo Seo, Ju-Hyung Kang, Myung-Ki Kim, Byeong-Hyeon Ahn, Ju-Young Kim, Kwang-Yong Jeong, Hong-Gyu Park, and Yong-Hee Lee, "Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition," Opt. Express 17, 6790-6798 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  2. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004). [CrossRef] [PubMed]
  3. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006). [CrossRef]
  4. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  5. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007). [CrossRef] [PubMed]
  6. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007). [CrossRef] [PubMed]
  7. M. Lon?ar, A. Scherer, and Y. Qui, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003). [CrossRef]
  8. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004). [CrossRef] [PubMed]
  9. S. Kita, K. Nozaki, and T. Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008). [CrossRef] [PubMed]
  10. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004). [CrossRef]
  11. S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008). [CrossRef] [PubMed]
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, New York, 1995).
  13. Y. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  14. K. Nozaki, H. Watanabe, and T. Baba, "Photonic crystal nanolasers monolithically integrated with passive waveguide for efficient light extraction," Appl. Phys. Lett. 92, 021108 (2008). [CrossRef]
  15. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005). [CrossRef]
  16. K. Hennessy, C. Högerle, E. L. Hu, A. Badolato, and A. Imamo?lu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006). [CrossRef]
  17. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238 (2006). [CrossRef] [PubMed]
  18. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, 043123 (2008). [CrossRef]
  19. M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y-H. Lee, "Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots," Opt. Express 16, 9829 (2008). [CrossRef] [PubMed]
  20. H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nat. Photonics 2, 622 (2008). [CrossRef]
  21. S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, P. Viktorovitch, "Microlasers based on effective index confined slow light modes in photonic crystal waveguides," Opt. Express 16, 6331 (2008). [CrossRef] [PubMed]
  22. M.-K. Kim, I.-K. Hwang, M.-K. Seo, and Y.-H. Lee, "Reconfigurable microfiber-coupled photonic crystal resonator," Opt. Express 15, 17241 (2007). [CrossRef] [PubMed]
  23. C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, B. J. Eggleton, "Reconfigurable microfluidic photonic crystal slab cavities," Opt. Express 16, 15887 (2008). [CrossRef] [PubMed]
  24. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005). [CrossRef]
  25. S. Tomljenovic-Hanic, C. M. Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka and S. Noda, "High-Q cavities in multilayer photonic crystal slabs," Opt. Express 15, 17248 (2007). [CrossRef] [PubMed]
  26. P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, "Local infiltration of planar photonic crystals with UV-curable polymers," J. Opt. Soc. Am. B 25, 1562 (2008). [CrossRef]
  27. M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003). [CrossRef]
  28. N. Silvis-Cividjian, C. W. Hagen, P. Kruit, M. A. J. v.d. Stam, and H. B. Groen, "Direct fabrication of nanowires in an electron microscope," Appl. Phys. Lett. 82, 3514 (2003). [CrossRef]
  29. M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science 287, 637 (2000). [CrossRef] [PubMed]
  30. S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, "Characteristics of a stick resonator in a two-dimensional photonic crystal slab," J. Appl. Phys. 95, 411 (2004). [CrossRef]
  31. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1998).
  32. We used the following equation to estimate the absorption loss of the CNB: 2?/(?Qabs) = 2?/? (1/Qm-1/Qt) [33], where 2?/(?Qabs), ?, Qm and Qt are the absorption loss, resonant wavelength, measured and theoretical Q factor respectively. The effect of the fabrication imperfection is included in this estimated absorption loss.
  33. M. Borselli, T. J. Johnson and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005). [CrossRef] [PubMed]
  34. M. W. McCutcheon and M. Lon?ar, "Design of silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond crystal," Opt. Express 16, 19136 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited