OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6849–6859

Application of circularly polarized laser radiation for sensing of crystal clouds

Yurii Balin, Bruno Kaul, Grigorii Kokhanenko, and David Winker  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6849-6859 (2009)
http://dx.doi.org/10.1364/OE.17.006849


View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The application of circularly polarized laser radiation and measurement of the fourth Stokes parameter of scattered radiation considerably reduce the probability of obtaining ambiguous results for radiation depolarization in laser sensing of crystal clouds. The uncertainty arises when cloud particles appear partially oriented by their large diameters along a certain azimuth direction. Approximately in 30% of all cases, the measured depolarization depends noticeably on the orientation of the lidar reference plane with respect to the particle orientation direction. In this case, the corridor of the most probable depolarization values is about 0.1–0.15, but in individual cases, it can be noticeably wider. The present article considers theoretical aspects of this phenomenon and configuration of a lidar capable of measuring the fourth Stokes parameter together with an algorithm of lidar signal processing in the presence of optically thin cloudiness when molecular scattering cannot be neglected. It is demonstrated that the element a44 of the normalized backscattering phase matrix (BSPM) can be measured. Results of measurements are independent of the presence or absence of azimuthal particle orientation. For sensing in the zenith or nadir, this element characterizes the degree of horizontal orientation of long particle diameters under the action of aerodynamic forces arising during free fall of particles.

© 2009 Optical Society of America

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.1350) Scattering : Backscattering
(290.5855) Scattering : Scattering, polarization

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: November 6, 2008
Revised Manuscript: January 22, 2009
Manuscript Accepted: March 14, 2009
Published: April 10, 2009

Citation
Yurii Balin, Bruno Kaul, Grigorii Kokhanenko, and David Winker, "Application of circularly polarized laser radiation for sensing of crystal clouds," Opt. Express 17, 6849-6859 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6849


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Sassen and D. K.  Lynch, "What are cirrus clouds?" in Cirrus, OSA Technical Digest (Opt. Soc. Am., Washington DC, 1998), pp. 2-3.
  2. Yu. F.  Arshinov, B. V. Kaul, and I. V.  Samokhvalov, "Study of crystal clouds by measuring the backscattering phase matrices with polarization lidar: Particle orientation in cirrus," in Cirrus, OSA Technical Digest (Opt. Soc. Am., Washington DC, 1998), pp. 131-134.
  3. C. M. R. Platt, Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals," J. Appl. Meteorol. 17, 1220-1224 (1978). [CrossRef]
  4. H.-R.  Cho, J. V. Iribarne, and W. G. Richards, "On the orientation of ice crystals in a cumulo-nimbus cloud," J. Atmos. Sci. 38, 1111 - 1114 (1981). [CrossRef]
  5. J. D.  Klett, "Orientation model for particles in turbulence," J. Atmos. Sci. 52, 2276-2285 (1995). [CrossRef]
  6. B. V. Kaul and I. V. Samokhvalov, "Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation," J. Atmos. Oceanic Opt. 18, 866- 870 (2005).
  7. B. V.  Kaul, I. V.  Samokhvalov, and S. N.  Volkov, "Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar," Appl. Opt. 43, 6620 -6628 (2004). [CrossRef]
  8. V. Noel and K. Sassen, "Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations," J. Appl. Meteor. 44, 653-664 (2005). [CrossRef]
  9. D. M. Winker, W. H. Hunt, and M. J. McGill, "Initial performance assessment of CALIOP," Geophys. Res. Lett. 34, L19803, doi:10.1029/2007GL030135 (2007). [CrossRef]
  10. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley and Sons, Inc. New York; Chapman and Hall, Ltd. London, 1957).
  11. B. V. Kaul, "Symmetry of light backscattering matrices of nonspherical aerosol particles," J. Atmos. Oceanic Opt. 13, 829-833 (2000).
  12. M. I. Mishchenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995). [CrossRef] [PubMed]
  13. G. G.  Gimmestad, "Reexamination of depolarization in lidar measurements," Appl. Opt. 47, 3795-3802 (2008). [CrossRef] [PubMed]
  14. C. J.  Flynn, A.  Mendoza, Yu.  Zheng, and S.  Mathur, "Novel polarization-sensitive micropulse lidar measurement technique," Opt. Express 15, 2785-2790 (2007). [CrossRef] [PubMed]
  15. B. V. Kaul and I. V.  Samokhvalov, "Orientation of particles in Ci crystal clouds. Part 2. Azimuth orientation," J. Atmos. Oceanic Opt. 19, 38- 42 (2006).
  16. B. V. Kaul, "Influence of electric field on ice cloud orientation," J. Atmos. Oceanic Opt. 19, 835- 840 (2006).
  17. D. N.  Romashov, "Backscattering matrix for monodisperse ensembles of hexagonal ice crystals," J. Atmos. Oceanic Opt. 12, 376-384 (1999).
  18. M. Del Guasta, E. Vallar, O. Riviere, F. Castagnoli, V. Venturi, and M. Morandi, "Use of polarimetric lidar for the study of oriented ice plates in clouds," Appl. Opt. 45, 4878-4887 (2006). [CrossRef] [PubMed]
  19. P. B.  Russell, J. Y.  Swissler, and P. M.  McCormick, "Methodology of error analysis and simulation of lidar aerosol measurements," Appl. Opt. 18, 3783-3790 (1979). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited