OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6860–6866

Creating high density nanoantenna arrays via plasmon enhanced particle–cavity (PEP–C) architectures

Benjamin M. Ross and Luke P. Lee  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6860-6866 (2009)
http://dx.doi.org/10.1364/OE.17.006860


View Full Text Article

Enhanced HTML    Acrobat PDF (3080 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new solution for high hot–spot density creation by coupling a particle and a cavity in a structure dubbed a plasmonic enhanced particle–cavity (PEP–C) antenna. In comparison to analogous particle–based dimer antenna structures, the PEP–C allows both a higher maximum field and an order–of–magnitude higher hot–spot density. In addition, the hot–spots of the PEP–C antenna can be precisely controlled, resulting in increased reliability. We elucidate the photonic characteristics of the PEP–C antenna and show tuning and optimization through choice of geometric parameters. These properties make the PEP–C antenna an excellent candidate for plasmonic–based biomolecular sensors.

© 2009 Optical Society of America

OCIS Codes
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 7, 2009
Revised Manuscript: February 20, 2009
Manuscript Accepted: February 20, 2009
Published: April 10, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Benjamin M. Ross and Luke P. Lee, "Creating high density nanoantenna arrays via plasmon enhanced particle–cavity (PEP–C) architectures," Opt. Express 17, 6860-6866 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6860


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, "Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods," J. Appl. Phys. 104, 034311 (2008). [CrossRef]
  2. T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. (K.) Kuipers, and N. F. Van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A 9, S315-S321 (2007). [CrossRef]
  3. V. Giannini and J. A. S’anchez-Gil, "Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas," Opt. Lett. 33, 899-901 (2008). [CrossRef] [PubMed]
  4. S. Chen, L. Han, A. Schulzgen, H. Li, L. Li, J. V. Moloney, and N. Peyghambarian, "Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure," Opt. Express 16, 13016-13023 (2008). [CrossRef] [PubMed]
  5. M. Li, Z. S. Zhang, X. Zhang, K. Y. Li, and X. F. Yu, "Optical properties of Au/Ag core/shell nanoshuttles," Opt. Express 16, 14288-14293 (2008). [CrossRef] [PubMed]
  6. B. M. Ross and L. P. Lee, "Plasmon tuning and local field enhancement maximization of the nanocrescent," Nanotechnology 19, 275201 (2008). [CrossRef] [PubMed]
  7. L. Guerrini, J. V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes, "Building highly selective hot spots in Ag nanoparticles using bifunctional viologens: application to the SERS detection of PAHs," J. Phys. Chem. C 112, 7527-7530 (2008). [CrossRef]
  8. K. Kneipp,M. Moskovits, and H. Kneipp (Eds.), Surface-Enhanced Raman Scattering: Physics and Applications (Springer, Germany, 2006). [CrossRef]
  9. E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D. 41, 013001 (2008). [CrossRef]
  10. K. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Ann. Rev. Phys. Chem. 58, 267-297 (2006). [CrossRef]
  11. G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, "Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer," Nat. Methods 4, 1015-1017 (2007). [CrossRef] [PubMed]
  12. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004). [CrossRef] [PubMed]
  13. Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano. Lett. 5, 5-9 (2005). [CrossRef] [PubMed]
  14. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garc?a de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006). [CrossRef] [PubMed]
  15. A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, "Individual gold dimmers investigated by far- and near-field imaging," J. Microsc. 229, 254-258 (2008). [CrossRef] [PubMed]
  16. H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, "Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe," App. Phys. Lett. 81, 5030-5032 (2002). [CrossRef]
  17. J. Merlein et al., "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008). [CrossRef]
  18. N. P. W. Pieczonka and R. F. Aroca, "Single molecule analysis by surfaced-enhanced Raman scattering," Chem. Soc. Rev. 37, 946-954 (2008). [CrossRef] [PubMed]
  19. J. K. Daniels and G. Chumanov, "Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering," J. Phys. Chem. B 109, 17936-17942 (2005). [CrossRef]
  20. K.-H. Su et al., "Raman enhancement factor of a single tunable nanoplasmonic resonator," J. Phys. Chem. B 110, 3964-3968 (2006). [CrossRef] [PubMed]
  21. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2009). [CrossRef]
  22. V. Santhanam, J. Liu., R. Agarwal, and R. P. Andres, "Self-assembly of uniform monolayer arrays of nanoparticles," Langmuir 19, 7881 (2003). [CrossRef]
  23. Y. K. Hwang et al., "Palladium and gold nanoparticle array films formed by using self-assembly of block copolymer," J. Nanosci. Nanotechnol. 6, 1850 (2006). [CrossRef]
  24. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, 164705 (2006). [CrossRef] [PubMed]
  25. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  26. J. D. Jackson, Classical Electrodynamics, 3rd Ed. (John Wiley and Sons, USA, 1999).
  27. M. Born and E. Wolf, Principles of Optics, 4th Ed. (Permagon Press, Scotland, 1970).
  28. C. E. Talley et al., "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimmer substrates," Nano. Lett. 5, 1569 (2005). [CrossRef] [PubMed]
  29. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," J. Phys. Chem. B 108, 6961-6968 (2004). [CrossRef]
  30. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surface-enhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005). [CrossRef]
  31. A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy near molecular resonances," J. Am. Chem. Soc. 128, 10905-10914 (2006). [CrossRef] [PubMed]
  32. R. M. Cole et al., "Understanding plasmons in nanoscale voids," Nano. Lett. 7, 2094-2100 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited